

DDC Controller Guide

MANUAL – INSTALLATION, OPERATION AND MAINTENANCE

v001 - Issue Date: 09/08/23

© 2023 SolutionAir Group. All rights reserved.

Table of Contents

1 Keypa	ad Description	2
2 Home	e Screen	3
2.1	Unit Status:	3
2.2	Operating Mode:	4
3 Home	e Screen Sub-Menu List	5
3.1	Power	6
3.2	User Settings	6
	3.2.1 Supply Air Temperature Set Point	6
	3.2.2 Supply Air Temperature Tolerance	6
	3.2.3 Supply Air Dewpoint Setpoint	7
	3.2.4 Room Temp/Dewpoint -SAT SP Reset	7
	3.2.5 Damper Settings	7
	3.2.6 CO2 Demand Control Ventilation (DCV)	7
	3.2.7 Fan Control	8
	3.2.8 Unit Of Measure	8
3.3	Unit Information	9
3.4	Heating	10
3.5	Cooling	11
3.6	Dehumidification	12
3.7	Fan Control	13
3.8	AHU –Energy Recovery	13
	3.8.1 Mix Box	14
	3.8.2 Heat Recovery Wheel	14
	3.8.3 Heat Recovery Plates (CUBE)	14
	3.8.4 Unit Enthalpy	14
3.9	Regencore	14
	3.9.1 Overview	14
	3.9.2 Free Cooling	15
	3.9.3 Smoke Purge	15
	3.9.4 Warmup Mode	15
	3.9.5 Damper Testing	15
	3.9.6 Operating Mode- Override	15
4 Prog	ram Screen	16
5 Progi	ram Screen Sub-Menu	16
5.1	Password	17
5.2	PIDs - Tuning	17
5.3	PID-Auto Tune	18
5.4	Lockouts	19
	5.4.1 Operating Modes Lockout	19
	5.4.2 Heating/Cooling Ambient Lockout	20
	5.4.3 Cooling Lockout	20
5.5	Operating Modes Overrides	20
5.6	I/O's	20
	5.6.1 I/O Configuration	21
	5.6.2 Override an I/O	22

	5.7	Unit Configuration	
		5.7.1 Unit Configuration Summary	22
		5.7.2 Supply Air Temp Alarm Limits	22
		5.7.3 Outside Air Temp High/Low Lockouts	22
		5.7.4 Supply Fan Alarm Delay	22
		5.7.5 Room Temp Configurations	22
		5.7.6 Burner Configurations	23
		5.7.7 Cooling Configurations	23
		5.7.8 AHU Heat Recovery Config	23
		5.7.9 Airflow Configurations	23
		5.7.10 Duct Static Pressure Ranges	24
		5.7.11 Alarm Export	24
		5.7.12 Parameters Export	24
	5.8	Schedule	24
		5.8.1 Daily Schedule	25
		5.8.2 Weekend Schedule (SAT, SUN)	25
		5.8.3 Vacation Days	25
		5.8.4 Special Days	26
	5.9	Alarm Logs	26
	5.10	Settings	26
		5.10.1 Date/Time	
		5.10.2 Astronomical Timer	
		5.10.3 Language	27
		5.10.4 BMS-BACnet/MODBus	27
		5.10.5 Override Network	27
	5.11	Commissioning	
	5.12	Run Time Hours	29
	5.13	Log out	29
6 0	Contr	oller Hardware Settings	29
7 li	nstall	ation and Maintenance	
	7.1	Uploading the Program/OS to the Controller	30
		7.1.1 USB	30
		7.1.2 PC Laptop	
		7.1.3 FTP	
		7.1.4 Update IP Address	32
		7.1.5 PC- Controller Ethernet Connection	32
	7.2	Upgrading the Program/OS in the Controller	33
	7.3	Log Transfer	34
		7.3.1 USB:	
		7.3.2 Laptop/Pc	35
	7.4	Wipe Retain and Restart Application	35
		7.4.1 Wipe Retain	35
		7.4.2 Restart Application	35
8 A	larm	S	
	8.1	Alarm Screen	

Table of Contents

8.2	Alarm Reset	. 36	
8.3	Troubleshooting Alarms	. 36	
9 Conne	ecting to the Web server	. 37	
9.1	PGD- Controller Web Display	37	
9.2	Alarms	37	
	9.2.1 Wipe Alarms History	37	
9.3	Logger – Point Trends	37	
	9.3.1 Datalogger	37	
	9.3.2 Setting up the Data Logger	. 38	
	9.3.3 Live Trend	. 38	
9.4	Control Program/OS Upgrade	. 39	
10 Rem	ote User Terminal	. 39	
11 BMS	11 BMS Points List (BACnet/MODBus)40		

🕕 IMPORTANT 🗸

The SolutionAir Control System is subject to periodic updates in the Control Program, Controller OS and the DDC Controller Guide itself. Please consult **SolutionAirGroup.com** or call **(204) 633 4808** to determine if the latest Guide, OS, and program are being used.

WARNING •

Improper adjustment of unit parameters and set points may result in the unit operating inefficiently. Only Trained and Authorized personnel are allowed to access the Solution Air DDC Controller.

🕖 WARNING 🗸

This Guide describes and explains all possible configurations available in our SolutionAir units. Please note that not all options and control screens mentioned in this document will be displayed in every unit. The Control Modules available are configured specific to each unit only will be displayed in the controller. For example, if a particular unit is not configured for Heating module, the control options specific to Heating modules will not be displayed.

NOTE: This Guide is intended only for the following Digital Controllers/Modules installed in SolutionAir units. Refer to electrical drawings for hardware I/O and communication (BMS) wiring. For assistance and support regarding other electronic devices installed in the unit, please contact SolutionAir.

MANUFACTURED BY 🔻

SolutionAir Group 404 Egesz Street Winnipeg, MB R2R 1X5

ANSI Z83.8-2009 Commercial Industrial Gas Heating Equipment

CSA 2.6-2009 Industrial Package Gas Fired Package Furnaces

General Operating Instruction

Summary

All SolutionAir products come equipped with a digital controller. The following guide will help familiarize the user with the controller interface and important operations.

NOTE: This guide does not replace a products installation/operation manual (IOM). Please refer to the relevant IOM for instructions and safety precautions before operating or servicing on the equipment.

1 Keypad Description

All products come with a DDC controller mounted to the unit, which can also be controlled remotely through a webbased virtual network interface or a Remote Terminal Module (optional). Refer to the following table for a description of each button and their typical keys on each type of keypad.

Controller Physical Keypad	Web based Keypad	Description	
		Alarm This key will flash if an alarm is tripped. Pressing the Alarm key will bring up the alarm screen to view the current alarms that have been tripped	
\bigcirc	Prg	Program From the Home Screen, the Program key advances the controller to the Program Configurations	
	Esc	Escape The Back/Escape key returns the user to the previous menu.	
		Up/Down The Up and Down keys allow users to scroll through menus and screens or to adjust input fields. When adjusting an input field, the keys can be held down to advance or decline quickly.	
		Enter Pressing the Enter key moves the cursor through input fields on the screen. If an input field has been altered, pressing the Enter key will save the change and then move to the next field.	

General Operating Instructions

2 Homescreen

The Home Screen indicates the unit's status and current operating mode and is the starting point that allows the user to navigate to other sub-menus. Pressing Up or Down will toggle the Home Screen Sub-menu list. Press Enter to bring up the selected sub-menu.

2.1 Unit Status

The unit Status Displays the Unit ON/OFF condition. The following table describes the 10 different unit status possibilities:

ON/AUTO	The Unit is ON and in AUTO, can be Turned ON from the Display Screen/ BMS /Schedule.
OFF BY ALARM	The Unit is Disabled/Turned Down by Critical Alarm. Refer Alarm Summary for Interlocks.
OFF BY BMS	Turned OFF from BMS via BACnet/Modbus. Refer BMS Points List.
OFF BY SCHED Turned OFF By Occupancy Schedule.	
OFF BY DI Disabled by Digital Input -Physical Switch (Kill switch in the unit or from the customer- Refer Electrical	
OFF BY KEYBOARD	When the Unit is Turned OFF from the Display Screen POWER Menu.
OFF BY INTERLOCK	Unit is Disabled by any of the following: Fire Interlock, Exhaust Fan Interlock, General Interlock from the customer. Refer Alarm Summary for Interlocks.
IN MANUAL MODE	When the unit is overridden MANUALLY to any of the Operating Modes. Refer Overrides.
SYSTEM STARTUP	When the Unit has been Turned ON, goes to System Startup.
DAMPERS OPENING	Indicating the Dampers are opening at Startup

General Operating Instruction

2.2 Operating Mode

The operating mode describes the unit's current operating mode. The following table describes the 7 different operating modes in the unit.

	OFF	The Supply Fan is OFF. (Note: If the unit status shows ON/AUTO, but the operating mode shows OFF, this indicates the fan has not started yet or it failed to start)
Ø	Dehumidification	The unit is operating in Dehumidification (Dehum) Mode. The Dehumidification Mode has the highest priority over all other Operating Modes.
${\mathscr Q}$	Economy	The unit is operating in Economy Mode (Free Cooling Mode)
Ċ	Heating	The unit is operating in Heating Mode
***	Cooling	The unit is operating in Cooling Mode.
8	Warmup	Burner Warmup Mode before Startup
©↓	Cool Down	Burner Cooldown Mode after shutdown.
で茶	Opening Damper	Indicates the Dampers are Opening at Startup.

General Operating Instructions

3 Home Screen Sub-Menu

The below table lists the nine possible fields within the sub-menu list, with a brief description of each field.

Ċ	Power	Brings up the Power screen, which allows the user to turn the Unit ON / OFF.
Set	User Settings	Brings up the User Settings screen. The user can change the unit's standalone set points from this screen.
i	Unit Information	Brings up the Info Screen and displays unit-specific model, system, and operating information.
Ì	Heating	Brings up the unit Heating section. The user can see what the Heating component of the unit is doing at any given time in real time.
**	Cooling	Brings up the unit Cooling section. The user can see what the cooling component of the unit is doing at any given time in real time.
B	Dehumidification	Brings up the Unit Dehumidification section. The user can see what the Dehum component of the unit is doing at any given time in real time.
arphi	AHU-Embedded Energy Recovery	Brings up the AHU Energy Recovery section. The User can see how the Heat Recovery wheel, or the CUBE Core plates are performing at any given time.
%	Fan control	Brings up the Fan control screen. The user see can see the fan speed, airflow and duct static readings at any given time.
	Regencore Units	Brings up the Regencore Heat Recovery unit configuration and information.

General Operating Instruction

3.1 Power

The Power sub-menu field allows you to turn the unit ON and OFF.

If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows the power symbol, then press **Enter** to enter the selected power menu.

To turn the unit ON or OFF press the **Up** button until the desired option is displayed on the screen, then press **Enter** to initiate the selected function.

Once the unit has been turned off, allow at least 1 minute for VFD's to fully discharge and fans to ramp down before turning the unit back on. Failure to do so may cause damage to the equipment.

3.2 User Settings

The User Settings sub-menu field allows the user to ADJUST and SAVE the units standalone SET POINTS. To scroll through pages within the menu, ensure the cursor is at the top of the page, then press **Up** or **Dow**n to scroll through the pages.

If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows the set icon, then press **Enter** to enter the User Settings Menu.

3.2.1 Supply Air Temperature Set Point

Displays the Default supply air temperature set point (SAT-SP) and the actual Supply air temperature reading and The Actual Supply SP (SP from BMS or set point Reset)

To change the supply air temperature set point, press **Enter** to move the cursor onto the set point reading, then press **Up** or **Down** to adjust the setting, then press **Enter** to save setting.

Ŗ	Set Shursh Supply Air Temp SP	Ť
Any.	Supply Air SP 70.1*	4
F 44	Act Supply SP 70.2'F Act Supply Temp 67.4'F	¥

3.2.2 Supply Air Temperature Tolerance

Displays the supply air temperature set point tolerance to enable HEATING/COOLING Module based on the Outside/ Mixed Air Temperature. To change the tolerance set point press **Enter** to move the cursor onto the set point reading then press **Up** or **Down** to adjust the setting, then press **Enter** to save the setting.

0	Supply Air Temp SP Tolerance	+
~*	Heat Tolerance 0.1#	*
	Actual Act Supply SP 70.27	+

General Operating Instructions

Heating Enable

Heating Module is Enabled When the Outside/Mixed Air Temp is below the Supply Air Temperature setpoint minus the Heating Tolerance.

OAT/MAT < (SAT SP - (Heat Tolerance + 1°C))

Cooling Enable

Cooling Module is Enabled When the Outside/Mixed Air Temp is above the Supply Air Temperature setpoint plus the Cooling Tolerance.

OAT/MAT > (SAT SP + (Heat Tolerance + 1°C))

3.2.3 Supply Air Dewpoint Setpoint

Displays the supply air Dewpoint Setpoint. To change the setpoint press **Enter** to move the cursor onto the setpoint reading, then press **Up** or **Down** to adjust the setting, then press **Enter** to save the setting.

3.2.4 Room Temp/Dewpoint -SAT SP Reset

To Enable/Disable Supply Air Setpoint Reset based on room demand.

Room Temperature Demand- Supply Air Temp setpoint Reset

Allows the user to Enable/Disable the Supply Air Temperature Setpoint Reset based on Room Temperature (either shared via BMS or actual room temperature probe). The setpoint can be adjusted on the screen or can be shared from the BMS.

3.2.4.2 Room Humidity Demand- Supply Air Dewpoint setpoint Reset

Allows the user to Enable/Disable the Supply Air Dewpoint setpoint Reset based on room humidity (either shared via BMS or actual room humidity probe installed). The setpoint can be adjusted on the screen or can be shared from the BMS.

Disable Roon Reset Dewpoint Control Roon SetPoint 12.7c
Act Roon DP SP 12.7c Act Roon DP 15.6c

3.2.5 Damper Settings

Allows the user to adjust the Fresh Air Damper and Return Air Damper minimum and maximum position.

This setting is to be adjusted by the air balancer for the unit airflow rate and ventilation rate.

Set Hinkox Settings	Return Dameer Setting
Min Fresh Air SP 20%	Min Return Air SP 1005
Max Fresh Air SP 100%	Max Return Air SP 1005
Act Min FA SP 200FA Act Max FR SP 1003FA Act Mixbox Pos 200FA	Act Min RA SP 0%RA Act Max RA SP 100%RA Act Max RA SP 100%RA Act Mixbox Pos 30%RA

3.2.5.1 Return Air Damper Scaling

Allows the user to scale and adjust the Return Air Damper position with respect to Fresh Air Damper position.

Return Danper Setting	Set Nixbox Settings Return Danper Setting
RA:FA Dwp Scale -1.00 RA Damper Offset 100%	RAIFA Dwp Scale -0,50 RA Damper Offset 80%
Act Mixbox Pos 88%RA	Act Mixbox Pos 78%RA

3.2.6 CO2 Demand Control Ventilation (DCV)

Allows the user to adjust and change the Room or Return CO2 set point. The dampers will modulate to maintain the CO2 setpoint. The Min/Max damper positions can be adjusted here.

Ŗ	Set Mixbox Settings CO2 Control Setting	↑
Prg	CO2 Threshold 800ppm	÷
Esc	HCTUAL Act Return CO2 ØPPm Act Mixbox Pos 100%FA	t

General Operating Instruction

3.2.7 Fan Control

민 WARNING 🗸

Airflow settings should not be changed by anyone other than a qualified technician. Unnecessary changes to this field can cause damage to the equipment.

Displays the Airflow Settings for the unit. Here the fan control method, fan speed, duct static pressure and airflow setpoint can be adjusted. To change the set point press **Enter** to move the cursor onto the set point reading, then press **Up** or **Down** to adjust the setting, then press **Enter** to save the setting.

Supply Fan – Speed Control

The Supply Fan can be controlled in three different ways as follows:

• **Fixed** – This is for constant air volume (CAV) applications. Adjust the fixed fan speed to get the desired airflow (disregard all other variables)

• CFM (Flow Control)

For this control method, the unit should be equipped with a Differential Pressure Transducer or an Airflow station.

Ŗ	Set Airflow Setting Supply Airflow SP Birflow SP 20000CFM	↑
Prg	Actual Control Method CFM	4
Esc	Act Airflow 0CFM Act Fan Speed 70%	Ŧ

• **DSP** (Duct Static Pressure Control) For this control method, the unit should be equipped with a Duct Static Pressure Transducer.

Ŗ	Set Airflow Setting Supply Airflow SP Girflow SP 2000CFM	↑
Prg	Actual Control Method CFM	÷
Esc	Act Airflow 0CFM Act Fan Speed 70%	Ŧ

Return/Exhaust Fan – Airflow/Static Control

The Return Fans can be controlled in Five different ways

• **Fixed** – This is for constant air volume applications. Adjust the fixed fan speed to get the desired airflow (disregard all other variables)

• DSP (Return/Exhaust Duct Static Pressure Control)

For this control method, the unit should be equipped with a duct static pressure transducer.

Ŗ	Set Airflow Setting Return Duct Static SP Duct Static SP 1.00"W	↑
Prg	Actual Control Method DSP	÷
Esc	Act Duct Static-0.50"W Act Fan Speed 66%	≁

• CFM (Return/ Exhaust Air Flow Control)

For this control method, the unit should be equipped with a Differential Pressure Transducer or an Air Flow station.

2	Set Airflow Setting Return Airflow SP Dirflow SP 20000FFM	↑
rg	Actual Control Method CFM	÷
sc	Act Airflow OCFM Act Fan Speed 66%	≁

Ratio

Adjust the **Exh: Sup Ratio** to have the return fans track the supply fan speed. The below example illustrates return fan tracking the supply fan at 1.5 times the supply fan speed. This will maintain negative pressure inside the space.

	5	
Ŗ	Set Airflow Setting Return Ratio Control Control Method Patio	↑
Prg	SA FanSpeed SP 65% Act SupFan Speed 65%	4
Esc	UseFADamper% FALSE Act RetFan Speed 98%	t

• Bal FA (Balance Outside Airflow)

Setting the return fan to this control method enables the return fan to Track the Outside Airflow and maintain the Balance Airflow setpoint in the unit.

NOTE: Reach out to SolutionAir before adjusting this.

Ŗ	Set Airflow Setting Return Ratio Control Control Method Bal FO	↑
Prg	SA FanSpeed SP 65% Act SupFan Speed 65%	t
Esc	UseFADamper% FALSE Act RetFan Speed 66%	¥

General Operating Instructions

3.2.8 Unit Of Measure

User can change the Unit of Measure for all menu fields.

To change the Unit of Measure, press **Enter** to move the cursor onto the field to be changed, then press **Up** or **Down** to select either USA (°F, PSI), SI (°C, kPa), SI (°C, bar), CAN (°C, PSI), UK (°F, PSI).

Press Enter on the desired Unit of Measure to save.

3.3 Unit Information

The Unit Information sub-menu displays the specific unit model information along with system and operating information. To scroll through pages within the menu, ensure the cursor is at the top of the page, then press **Up** or **Down** to scroll pages.

If the screen is not already at the home screen press the **Escape** button until the home screen is displayed.

Press the Up button until the sub-menu option shows Unit

Information, then press **Enter** to enter the Unit Information sub-menu.

General

Displays the name of the manufacturer, technical support phone number, job number, and job name.

Unit Mode

Displays the mode the unit is currently running in.¹

¹NOTE: The Unit Information Tabs are READ Only information, to change or override any variables refer to User Settings.

Temperature

Displays real time temperature readouts of multiple sensors located within the unit.

0	Info TEMPERATURE		۰
Pre	Fresh Air Evar Leaving Dewroint Coil	54.9 F 70.1 F 70.0 F	•
Ēн	SUPPly Hin 1	10.01	¥

Humidity

Displays real time humidity readouts of multiple sensors located within the unit.

D.	Info	HUMIDITY	۰
	Fresh Bir	29.2%	
Proj.	Return Air Exhaust Air	ž	۴
Ēн	Supply Air	2	¥

Dew Point

Displays real time dewpoint readouts of multiple sensors located within the unit.

Fresh Air

Displays the temperature, relative humidity, dew point, air mixture percentage, and enthalpy of the fresh air inside the unit's cabinet.

General Operating Instruction

Evaporator Air

Displays the leaving air temperature, dewpoint and incoming air temperature of the evaporator coil.

Supply Air

Displays the temperature and dew point of the supply air being discharged to the building from the unit. 127

Ľ,	Into SUPPLY AIR Supply Air Teme 72.1% cH 0.0%	¢
-	Dewpt 70.67 Enth 0.080/16	۴
	CO ØPPM	¥

Heating Configuration

Displays the number of heating stages that are configured to this specific unit.

Cooling Configuration

Displays the number of cooling stages, dehumidification stages, and reheat stages along with the type of expansion valves and compressors.

Other Configurations

Displays any additional functions that this specific unit has installed or is set up for outside of the standard unit configuration.

System Information

Displays the type of controller along with the memory writes and IP Address of that specific controller.

Ģ	Info IPaddr 192.1 Board Lype:	3751131 01150 168. 1.152 G.BCO mini	۴
Pag	Board size: Board temp:	High End	۴
£н	Main task: 405ms	2.5Cycle/s	÷

Software Information

Displays the version of software that specific controller Is operating on.

ß	Info S	OFTWARE INFO	٠
- 17	SW ver.:	2.3.00.00B	•
-	OS ver : BOOT ver :	4.5.005	۲
Ēн	Hours:	000045hr	¥

Blackout Information

Displays the current date and time along with the length and time that the power had been lost to the controller.

Ð	Info BLACKOUT INFO	۴
14	07/05/20 19:29:46 PowerOff time:	٠
£H	Length last time off: 0Days OHrs OMin	¥

3.4 Heating

The Heating sub-menu field allows the user to see what the heating component of the unit is doing at any given time in real time. To scroll through pages within the menu, ensure the cursor is at the top of the page, then press **Up**

or **Down** to scroll through the pages. If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows Heating, then press **Enter** to enter the Unit Information sub-menu.

General Operating Instructions

No Heating

If the unit is not configured for Heating, the above screen will be displayed. If the unit is configured for heating, the following screens will be displayed in sequential order.

Overview

Displays the unit's mode status and the heating demand, along with the heating supply air set point and actual supply air temperature.

Gas Heat

Displays the heating modulation signal in a percentage along with how many stages of heat are active.

ISAL ISAL ~ Mod Heat Signal 9% ~ Stage 1 ON Status:ON

3.5 Cooling

The cooling sub-menu field allows the user to see what the cooling component of the unit is doing at any given time in real time. To scroll through pages within the menu, ensure the cursor is at the top of the page, then press **Up** or **Down** to scroll the pages.

If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows **Cooling**, then press **Enter** to enter the Unit Information sub-menu

No Cooling

If the unit is not configured for Cooling, the above screen will be displayed. If the unit is configured for Cooling, the following screens will be displayed in sequential order

Overview

Displays the unit's mode status and the cooling demand, along with the air temperature leaving the coil's setpoint and actual temperature.

0	Lool OVERUIEN	*
-72-	Status: NOT IN COOLING	·
Pet	Cooling Demand 8%	۴
Ēн	Coil Leaving SP 70.0% Coil Leaving 70.4%	÷

Compressors

Displays the current cooling demand as well as the operational state each individual compressor is currently in.

Ģ	Cooling Denand	t
~	C-81: 0EE	٠
e++	C-C1: OFF C-D1: OFF	÷

Cooling Circuit Info

Displays the current operational state of the chosen compressor. To select the desired compressor press **Enter** until the cursor is flashing on the "C" of Circ, then press **Up** until it shows the desired circuit then press **Enter** to show the circuits readings. Press **Enter** to move the cursor back to the top of page to continue to scroll through the pages.

Circuit EEV 1 Info

Displays the pressures and temperatures, along with the superheat and sub-cooling of the circuit. Each circuit has its own page.

General Operating Instruction

Circuit EEV HP Info

Displays the pressures and temperatures, along with the superheat and sub-cooling of the circuit. Each circuit has its own page.

EVD Raw Data

Displays the raw data received by the controller inputs from the attached components. i.e. sensors, EEV's, etc. Each circuit has its own page.

© \$1*40 \$2*40	499	EUD A1 ADDR	80 80	۴
~ \$3+40	1772			ţ
~ EEV2	, ë	(3	¥

Head Pressure Control Info

Displays all relevant information regarding the units head pressure control. Each circuit has its own page.

Ŗ	Cooling Demand	8 101121 0.0%	t
~	Cond Fan Speed Cond Damper cls	100.0%	٠
£11	Lig Line PSI HP Target	218.5	÷

3.6 Dehumidification

The dehumidification sub-menu field allows the user to see what the Dehum component of the unit is doing at any given time in real time. To scroll through pages within the menu ensure the cursor is at the top of the page, then press **Up** or **Down** to scroll the pages.

If the screen is not already at the home screen, press the **Up** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows **Dehumidification**, then press **Enter** to enter the Unit Information sub-menu.

No Dehumidification

If the unit is not configured for Dehumidification, the above screen will be displayed. If the unit is configured for Dehumidification, the following screens will be displayed in sequential order.

Overview

Displays the unit's mode status and the cooling, Dehum, reheat demand, along with the air temperature leaving the coil's setpoint and actual temperature.

Ċ	Status: NOT IN DEHUM	Ť
~	SP 70.0 F Coil 70.8 F Dehum Demand 0%	٠
In:	Reheat Demand 0% SP 70.0 F Coil 71.7 F	¥

Overview continued.

Displays the incoming air temperature along with the cooling, dehumidification, and reheat capacity percentage.

Ģ	Incoming Air	008	54.1F	t
~	SP 70.0% Dehum 0%	Coil	70.0%	۴
đie.	Reheat 0% SP 70.07	Coil	70.0%	÷

Dehumidification Circuit Info

Displays the current operational state of the chosen compressor. To select the desired compressor, press **Enter** until the cursor is flashing on the "C" of Circ, then press **Up** until it shows the desired circuit then press **Enter** to show the circuits readings. Press **Enter** to move the cursor back to the top of page to continue to scroll through the pages.

Ģ	Dehum Cinc R Comp: Off HP Tme 52.5 49.55	t
Pag	Pre 48.7 PSI9 58.8 SHt 52.3 47.75	٠
e ==	Liquid Line Tmp 62.35 EEV 0.0 % 15.5	÷

EVD Raw Data

Displays the raw data received by the controller inputs from the attached components. i.e. sensors, EEV's, etc. Each circuit has its own page.

© <u>∎ehum</u> S1*49	137		۴
~ \$3+40	143 394		٠
≝EEV2 ERR 0	Ø	0	¥

General Operating Instructions

3.7 Fan Control

The Fan Control sub-menu field allows the user to see what the fans in the unit are doing at any given time in real time. To scroll through pages within the menu, ensure the cursor is at the top of the page, then press **Up** or **Down** to scroll the pages.

If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows **Fan Control**, then press **Enter** to enter the Unit Information sub-menu.

Constant Volume

If the unit is configured as Constant Air Volume, the above screen will be displayed. If the unit is configured for variable air volume (VAV - fan speed control), the following screens will be displayed in sequential order:

Airflow Overview

Displays the Supply and Return fan airflow and current fan

Info A: Supply Air Supply Fan Spd	UCFM 07
Ret/Exh Air Ret/Exh Fan Sed	0CFM 0%
Fresh Air	ØCFM

speed and fresh air CFM.

Supply Air Flow

Displays the supply fan control method, airflow setpoint, current supply airflow and supply fan speed.

Return Air Flow

Displays the return fan control method, airflow setpoint, current return airflow and return fan speed.

Info Ret/E Control Airflow	xh Airf Method SP 20	Drflow low Fixed 0000CFM
Airflow Ret/Exh	Fan Sed	0CFM 0%

DSP (Duct Static Pressure) Overview

Info	Airflow
Supply DSP	-0.50"W
Supply Fan Spd	0%
Return DSP	-0.50"W
Ret/Exh Fan Spo	4 0%

DSP Supply

Displays the control method, the supply duct static pressure setpoint, the actual supply duct static pressure reading, and the supply fan speed percentage.

Linfo Hinflow Supply Duct Static Control Method Fixed Duct Static SP 1.00"W
Duct Static -0.50"W Supply Fan Spd - 0%

DSP Return

Displays the control method, the return duct static pressure setpoint, the actual return duct static pressure reading, and the return/exhaust fan speed percentage.

Info	Airflow
Return Duct	, Static
Duct Static S	ю гіхео ХР 1.00"Ш
0400 003010 0	
Duct_Static _	0.50"W
Ret/Exh Han S	ipd 0%

3.8 AHU – Energy Recovery

NOTE: This mode is applicable and available only for AHU units that have mixing boxes, heat exchanger plates, or heat recovery wheels. This is different from our dedicated REGENCORE energy recovery units.

The AHU- Energy Recovery sub-menu field allows the user to see what the Energy Recovery component of the unit is doing at any given time in real time. To scroll through pages within the menu ensure the cursor is at the top of the page, then press **Up** or **Down** to scroll the pages.

General Operating Instruction

If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Press the **Up** button until the sub-menu option shows **Economy**, then press **Enter** to enter the Unit Information sub-menu.

No AHU- Energy Recovery

If the unit is not configured for AHU - Energy Recovery (mixing box economizer/plate heat exchanger in AHU/heat recovery wheel in AHU), the above screen will be displayed. If the unit is configured for AHU - Energy Recovery, the following screens will be displayed in sequential order:

3.8.1 Mix Box

Displays the Mix Box temperature ϑ enthalpy (only if the unit has relative humidity – RH - readings) information.

3.8.2 Heat Recovery Wheel

Displays the Heat Recovery Wheel speed, temperature, and enthalpy (if the unit has RH sensors) information.

linfo ECO - Heat	wheel	Info ECO - Heatwheel
Temperature In	fo	Enthalpy Info
Heatwheel Speed	0%	Heatwheel Speed 0%
Fresh Air Mixed Air Return Air Exhaust Air	0.0c 0.0c c	Fresh Air 0.0*7/*3 Mixed Air 0.0*7/*3 Return Air 0.0*7/*3 Exhaust Air 0.0*7/*3

3.8.3 Heat Recovery Plates (CUBE)

Displays the Heat Recovery Plates (CUBE) bypass damper position and temperature readings.

lnfo ECO - P	l ateXchn
Temperature	Info
Plate Bypass	100%
Fresh Air Mixed Air Return Air Exhaust Air	0.0c 0.0c c

3.8.4 Unit Enthalpy

Displays the Enthalpy of all airflow sections.

Info	Enthalpy
Fresh Air	0 0 0 k1/kg
Return Air	0 0 k1/kg
Xhaust Air	0 0 k1/kg
Mixed Air	0 0 k1/kg
Reheat Air	0 0 k1/kg
Supply Air	0 0 k1/kg

3.9 Regencore

Airflow	OUERUIEW
UNIT IS	NOT CONFIGURED
FOR	REGENCORE

If the Unit is not configured for Regencore, the above screen will be displayed. If the unit is configured for Regencore, the following screens will be displayed in sequential order:

3.9.1 Overview

The following screen displays the damper cycling delay for heat recovery and free cooling modes. The values are factory set; please consult SolutionAir before changing any of these variables.

The dampers are closed when the unit is OFF; it can be changed to open in the same screen.

RegenCor Heat Rec Free Coo	е Сус 1	le 1 1e 1 120	i <u>9ure</u> imes 40sec .0min
<mark>)Pen Whe</mark> A B	n Uff 1 & F 1 & F	2 =	Close Close

General Operating Instructions

3.9.2 Free Cooling

The Free Cooling mode is enabled when the outdoor air temperature is within the supply air temperature setpoint range. The range can be adjusted in the below screen.

The default value is as follows:

((SAT SP -3°C < OAT < SATSP +1°C))

3.9.3 Smoke Purge

This screen is visible only when the unit has a smoke detector. The dampers can be configured to open or close during Smoke Purge and the supply fan smoke purge speed can be configured.

Configure RegenCore Smoke Purge Currently Active NO Supply Fan X
Smoke Pur9e Positions A1 & A2 = Close B1 & B2 = Close

3.9.4 Warmup Mode

The Warmup Mode is factory enabled by default and it can be disabled it if not required. The Warmup Mode is activated at startup when the OAT is less than the enable setpoint. The Warmup mode will be deactivated after the warmup delay. During this mode, all the internal dampers are opened, and the return fan is turned ON warming up the cores. Once the mode is deactivated, the supply fan is turned ON. Consult SolutionAir before adjusting any of these parameters.

3.9.5 Damper Testing

To move the dampers manually, override the test mode to YES, wait for the unit to shut down (OFF delay- 60 Seconds) and dampers to HOME (20 seconds) and then override the desired dampers to be tested to OPEN/CLOSE. Once testing/troubleshooting is done, change the dampers back to Close position and test mode to NO.

Enablin9 test will stop uni	<mark>Configure</mark> Mode t!
(Wait for OFF Delay(60S)and	NO Al=Close A2=Close
Homin9 to Complete)	B1=Close B2=Close

3.9.6 Operating Mode- Override

The Regencore Unit can be manually overridden to the following operating modes.

AUTO	Regencore in AUTO Mode
FORCE OFF	Unit Forced to OFF
FORCE RECIRC	Forced to Recirculation Mode
FORCE FC	Forced to Free Cooling Mode
FORCE ER	Forced to Heat Recovery Mode

🕖 WARNING -

If the Controller is Configured for BMS Integration, BMS has higher priority over Display Screen. Overriding the Operating Mode here will have no effect on the unit. To Disable BMS network momentarily, Refer override Network.

NOTE: Recirculation Mode can only be enabled through manual override, **there is no auto-enable sequence for recirculation mode.**

When the Unit is in AUTO Mode:

Configure Overnide Mode: AUTO Current Mode: UNIT OFF AUTO

When the Unit is overridden to Recirculation Mode:

	<u> Confi9ure</u>
Uverride	_Mode:
FURLE RE	LIKL
Current	Mode:
Recirc	
FORCED	
N.	

General Operating Instruction

4 Program Screen Sub-Menu

The Program Screen allows the user to adjust and set all the main configurations for the unit. To access the Program screen from the Home Page, press **Program**. The available options in the Program sub-menu are listed below:

Program Screen Sub-Menu List

\sim	PID's- Tuning	Allows the user to change the PID parameters (Tuning)
Ø	Auto Tune	PID tune manager
Ê	Lockout's	Allows users to lockout certain modes/modules.
47	Overrides	Allows users to turn on certain modes/modules
2	I/O's	Raw list of INPUTS and OUTPUTS
#1	Unit Configuration	Allows users to set limit values
	Schedule	Allows user to configure occupancy schedule, vacation, and special days
Ì	Alarm Logs	Displays list of active and inactive alarms
2	Settings	Displays list of controller settings
2	Commissioning	Allows user to initiate the commissioning wizard
\odot	Runtime Hours	Displays component runtime hours
I ₽	Logout	Allows user to log out of program settings.

5 Program Screen Sub-Menu

The Program Screen Sub-Menu field allows the user to adjust and save the units main configurations. To scroll through pages within the menu ensure the cursor is at the top of the page, then press **Up** or **Down** to scroll the pages.

General Operating Instructions

Home Screen

If the screen is not already at the home screen, press the **Escape** button until the home screen is displayed.

Program Sub menu

To access the Program Sub menu, press Program once.

5.1 Password

Use the **Up** and **Down** keys to change the numbers. Once the desired number has been reached, press **Enter** to move to the next digit field. When the desired 4-digit password is entered, press **Enter** and the program sub menu appears.

Password: 0100

5.2 PIDs - Tuning

To access the PID parameters press **Enter** until the cursor is on the PID menu then press **Enter** again.

PID Loops - Heating

Displays the Kp, Ti, Td, current position and allows for manual manipulation once enabled. To adjust any parameter, press **Enter** until the cursor is on the desired field, and then use the **Up** and/or the **Down** button to make the change. Once the parameter is adjusted, press **Enter** to save it.

Ð	SPID LOUPS HEAVING Kp 4.0 Setpoint T: 190- 70 05	t
14	Td 0s Actual 69,9)	٠
fre	Enable Manual 0 Manual Posit: 0%	ŧ

PID Loops -Cooling

Displays the Kp, Ti, current position and allows for manual manipulation once enabled. To adjust any parameter press **Enter** until the cursor is on the desired field, and **Enter** then use the **Up** and/or the **Down** button to make the change. Once the parameter is adjusted, press **Enter** to save it.

Ģ	S Plu LudrS Cooling Kp 3.0 Setpoint Ti 120s 70.05	t
14	Actual 69.7F	*
£10	Enable Manual 0 Manual Posit: 0%	÷

PID Loops- Reheat

Displays the Kp, Ti, Td, current position and allows for manual manipulation once enabled. To adjust any parameter, press **Enter** until the cursor is on the desired field, and then use the **Up** and/or the **Down** button to make the change. Once the parameter is adjusted, press **Enter** to save it.

Q	SPID LOUPS RELEAN Kp 5.0 Setpoint Ti 180s 20.05	t
Par	Td 0s Actual 70.0F	٠
8 14	Enable Manual 0 Manual Posit: 0%	÷

PIDS - Superheat Circuit

Displays the Kp, Ti, Td, current position and allows for manual manipulation once enabled. To adjust any parameter, press **Enter** until the cursor is on the desired field, and then use the **Up** and/or the **Down** button to make the change. Once the parameter is adjusted, press **Enter** to save it.

Ģ.	KP 8	9020 1.020	Setp 1	irc H oint 0.0*	۴
Pa	τâ	Ŭŝ.	Actů	al A1 4.1≝	÷
ŧн	Enabl	e Manu 1 Pos	al Ax Ax:	0.0%	¥

General Operating Instruction

PID-Auto Tune 5.3

Requirements to do PID auto-tune

- The PID to be tuned must currently be enabled and in control.
- The entire operation must be able to run within bounds of safeties (or unit will shut down or output will be overridden, invalidating results of auto-tuning).
- If the building is occupied, the resulting supply air temperature, humidity, pressure, or airflow during the test must be acceptable to the occupants or processes within the building.

The PID must not cross non-linearities such as:

- Safeties and real-world realities such as valve extremes (such as 0% and 100%).
- Regions where further stages are called or canceled.
- Regions of systems that have an atypical response • (such as the initial cracking or dead area in the center of an oversized valve).
- Regions where the time delay changes considerably • (such as hot or cold-water heat with the valve almost closed).

Steps to Auto Tune

Go to the menu for the Autotune of the function to be tuned:

Ŗ	Autotune Duct S Current Value Operating Point	97 197 197	↑
Prg	+/- Test Range PID is Disabled	20%	t
£sc.	Est time remain Confidence	0s 0%	¥

- 1. Ensure "PID is Disabled" message is not displayed
- 2. Press Enter to move cursor to different fields on the page
- 3. Accept default values for operating point and test range. If these values do not work, it may be necessary to adjust these using the Up, Down, and Enter buttons.

The operating point is the center of the actuator output during the test and the test range is the amount the test deviates from this point. The test outputs will be:

[Soak Output]	=	[operating point]
[High Output]	=	[operating point] + [test range]
[Low Output]	=	[operating point] – [test range]

For example, if operating point = 50% and test range = 10%, the test values of 50%, 60% and 40% will be used.

WARNING -

The use of values that produce test points above 100% or below 0% (or -100% for the room reset) will produce unstable tunings.

Saving and reloading settings

- 4. If it is possible the user will need to return to the current tuning if autotuning fails, it is suggested to save the current values.
- Select the state by pressing the enter button and change it from "Idle" to "Save Values"
- State will return automatically to "Idle"

Starting the autotune function

- 5. Select the state by pressing the enter button and change it from "Idle" to "Start". The state will immediately update as it begins the test sequence.
- 6. The "Est time remain" field should give a reasonable idea of how long to expect the tuning to take. If the testing needs to be aborted or restarted for any reason, simply select the state and change it to "Idle" and then back to "Start" to restart the test.
- 7. The test will stop, and display "State Done" after 3 peak and valley detections if an 90% confidence is achieved. Failing this, it will keep re-running the last peak and valley stages until the confidence is satisfactory. The confidence target decreases by 5% each time the last 2 steps are rerun to ensure it eventually stops. The confidence is determined by the variance in the metrics gathered in the last 3 peak and valley test cycles.

General Operating Instructions

Selecting calculated tunings

8. If the test was successful, select the state and change it to "Set Normal", "Set Slow and Stable", or "Soft and Stable". It is suggested that "Set barely stable" option only be used when necessary to prevent low limits on extremely cold heating start-ups.

NOTE: As long as the unit has not been shut off, this menu can be returned to and another option can be chosen later without rerunning the test if performance is not satisfactory.

9. Press the **Escape** button twice to return to the main menu

Suggestions for improved success

Connecting to the controller and displaying the live data during the test will allow experienced users to monitor the test. A typical test looks like this:

Consider re-running test if:

- A disturbance occurred during the test such as:
 - Cabinet door opening
 - Change or disturbance in airflow or static pressure
 - Test was run during atypical airflow or building static pressures
 - A change in unit inlet air occurred during the test
- The test confidence is low or lower than expected
- Graphical monitoring of the test shows anomalous behavior:
 - Last 3 peaks or valleys during test are not of similar height
 - The time taken for the last 6 stages are not similar

- Significant distortion of the output. Peak and Valley stages should resemble sine waves
- A gradual trending during the test (repeat with manual pre-soak beforehand)

For best stability, is it recommended that tuning is done using conditions that generate the most system gain. These conditions are typically the least stable. This will ensure that the system will always be stable in all conditions (although it may be sluggish). If it is not possible to replicate the conditions that generate the highest gain (lowest stability), then it is recommended that the less aggressive settings such as "Set Soft and Stable" or "Set Slow and Stable" be used. Conditions that produce higher system gain (recommended during test) are:

- Dirty filters
- Lower airflow/higher building static pressure
- Lowest VFD setting
- Dry, non-condensing air (when tuning cooling PID)

Conditions that produce low system gain (Not recommended due to false stability):

- Open doors or windows, heavy door traffic (increases damping of room reset oscillations)
- Unpopulated filters gives false stability
- Duct leaks (when testing duct static pressure or airflow)

5.4 Lockouts

The Lockouts can be used to DISABLE/LOCKOUT specific modules/components in the unit.

Ŗ	Nar Mar	in li hufia	<u>lenu 3/12</u> acturer Password	↑
Prg	Ð	в.	Autotune	4
	\cap	с.	Lockouts	_
Esc	4	D.	Overrides	Ŧ

5.4.1 Operating Modes Lockout

The Lockout mode allows the user to disable certain modules in the unit. The below examples show all the modules in the unit are locked outmanually:

General Operating Instruction

5.4.2 Heating/Cooling Ambient Lockout

Heating will be disabled upon High Ambient Lockout and cooling will be disabled upon Low Ambient Lockout. Please consult SolutionAir before changing these setpoints.

5.4.3 Cooling Lockout

The Cooling Lockout allows the user to disable cooling circuits or specific compressors in the unit.

5.5 Operating Modes Overrides

The Overrides Menu will let the user manually override the unit to a specific operating mode.

By default, the mode will be in AUTO and the user can switch to any of the below modes.

NOTE: Ensure the unit is configured and is capable of specific mode to be in operation.

- AUTO
- FORCE OFF
- COOLING
- HEATING
- ECONOMY
- DEHUM

Once the mode has been Overridden, ensure the **Unit** status in the **Home Screen** displays in manual mode and **Operating Mode** displays the correct mode.

The above example shows the unit overridden to Force Off.

5.5.1.1 Heating Overrides:

This Screen lets the user override the heating enable and modulating signal. To enable the heating override, set the **override Value** to 1 and change the **override** to Enable. Once this is done, the Heat stage 1 will change to Enable.

To override the modulating signal, change the **Override Value** to the desired value and set the **Override** to Enable.

NOTE: The Heating Mod Output is the actual control value in the program.

8 Heating Overrides	<u>S Heating Overrides</u>
Heat Stage 1: Disable	Heat Stage 1: Enable
Override Value: 0	Override Value: 1
Override: Disable	Override: Enable
Heatin9 Mod Ouput 0%	Heatin9 Mod Ouput 100%
Override Value: 0%	Override Value: 5%
Override: Disable	Override: Enable

5.5.1.2 HGBP Valve Override

This screen lets the hot gas bypass (HGBP) valve to cycle between Position 1 and Position 2 when it is overridden to Enable. Ensure to change it back to disable once complete. **NOTE**: To set the valve to be at a desired position, set Position 1 and Position 2 to the same value.

S	HGBP	Valve U	Jalk
En	able t	hiş at	
YU	UK owr) rı≦ķ!	
Enable		<u> </u>	able.
<u>Cacie</u> i	timę –	300	sec.
Posiți	on <u>1</u>	0.Q	14
Positi	on 2 -	Ø.0	- X.
Curren	t pos	0.0	- X

5.5.1.3 HGRH Valve Override

This screen lets the hot has reheat (HGRH) valve to cycle between Position 1 and Position 2 when it is overridden to Enable. Ensure to change it back to disable once complete. **NOTE:** To set the valve to be at a desired position, set Position 1 and Position 2 to the same value.

B HGI	RH Valve Walk
Enable	e this at
YOUR (own ri <u>s</u> k!
Enable	e Disable
Cycle_time	9 300 sec
Position	1 0.0%
Position a	2 0.0%
Current po	os 0.0%

5.6 I/O's.

The I/O's tab lists all of the I/O's wired to the controller. It will list all of the terminals in the main controller, I/O expanders, and DX cooling circuit EVDs that are installed in the unit.

General Operating Instructions

If a terminal slot shows empty, no device is connected to that terminal.

Refer to the electrical drawings for I/O terminal assignment.Some of the I/O screens are shown below:

NOTE: If a value is displayed as "####", it indicates the value is more than 4 digits.

Main Controller

Expander

EVD

39.0	19		EUD	-01
ST	Suct	ion_P	ress_A	Ű,
<u>52</u>	Suct:	ion_ <u>T</u>	emp_A1	Ø.
83	L19L3	ine_⊬	ress_H	. М
EE!	L19L) 1	une_i	EEU2	- Й
ND-	Â	ര്	NO-B	ŏ
DĪ٠	-1	-	DI-2	-

5.6.1 I/O Configuration

The I/O's in the controller can be configured and modified for various troubleshooting and testing. It is important to understand the I/O configuration menu.

Each I/O has its own configuration menu; go to any desired I/O and press **Enter**, the following screen appears

SI, No	Config	AI	DI	AO	DO	R/W
1	Binary Program Value	N/A	~	N/A	~	R
2	Analog Program Value	~	N/A	~	N/A	R
3	Binary Actual Value	N/A	~	N/A	~	R
4	Analog Actual Value	~	N/A	~	N/A	R
5	Manual override	~	~	~	~	W

SI, No	Config	AI	DI	AO	DO	R/W
6	Manual override Value	✓	~	~	~	W
7	I/O Range Max Value	✓	N/A	~	N/A	R/W
8	I/O Range Min. Value	✓	N/A	~	N/A	R/W
9	Invert Signal	✓	~	~	✓	R/W
10	Offset Value	✓	N/A	✓	N/A	R/W
11	І/О Туре	\checkmark	N/A	N/A	N/A	R/W
12	SET	✓	✓	✓	✓	W

Program Value - Control Program Value from the controller or the manual over-ridden value

Actual Value - The value reading/writing from or to the actual end device

- 1. **Binary Program Value** READ only, applicable for Digital Input/Digital Output (DI/DO).
- 2. **Analog Program Value** - READ only, applicable for Analog Input/Analog Output (AI/AO).
- 3. Binary Actual Value READ only, applicable for DI/DO.
- 4. Analog Actual Value- READ only, applicable for AI/AO.
- 5. Manual override Enables manual override
- 6. Manual override Value Enter the manual value
- 7. **I/O Range Max. Value** Sensor (AI) or Signal (AO) maximum range
- 8. **I/O Range Min. Value** Sensor (AI) or Signal (AO) minimum range
- 9. Invert Signal Inverts the signal
- 10. **Offset Value (Calibration)** Any offset value in the I/O Signal - Applicable for AI and AO. This can be used to calibrate the end device.
- 11. I/O Type- Sensor Type, Applicable for AI only. NOTE: If the I/O is Analog or Digital OUTPUT, the Type will display as NTC, disregard that.
- 12. **SET** Change to **YES** after any change in the configuration, it resets back to **NO**.

General Operating Instruction

5.6.2 Override an I/O

To override an I/O manually, follow the below steps

1. Go to the desired I/O that is to be overridden.

- 2. Press **Enter** to select Y1 or any desired I/O (up and down keys allow the user to move and select inputs/ outputs other than Y1).
- 3. Once the I/O configuration for the selected I/O appears
- Set "Man" to Yes
- Set "M/Val" to the desired value

- Set "Set" to Yes (this will reset back to NO on its own)
- The user should notice the actual I/O value changed to the overridden value
- 4. Press **Escape** until the main menu is displayed.

5.7 Unit Configuration

5.7.1 Unit Configuration Summary

The Unit Configuration tab displays the parameters and the different screens in Unit Configuration tab are displayed below in sequential order.

Main I	1enu	6/12
2 E.	I∕0s	
Ш́F.	Unit Config	
🛗 G.	Schedule	

5.7.2 Supply Air Temp Alarm Limits

The High/Low alarm limits and alarm delays for the supply air temperature can be adjusted in this screen. There is a startup delay of 420 Seconds and an alarm delay of 120 Seconds for the alarm to trigger. The Heating will be disabled upon high supply temp alarm and the unit will shut down on low supply temp alarm. Both of these require **Manual Reset** on the controller.

Temp Limits	; Config
H19h L1M1U Seteciet	65 Q%
Secrotific	00.00
🚬 Ļow Limit	
1SelPoint Istantus Tima	4.4C 420coc
Time Window	120sec

5.7.3 Outside Air Temp High/Low Lockouts

Heating will be disabled upon high ambient lockout and cooling will be disabled upon low ambient lockout. Please consult SolutionAir before changing these setpoints.

Temp Lockout Conf High Ambient Heating Lockout Setpoint 20.00	19 :
Low Ambient Coolin9 Lockout Setpoint 10.0%	=

5.7.4 Supply Fan Alarm Delay

The CSR Check Delay is the alarm delay between fan command and current sensor status. The CSR debounce delay is for the current sensor.

5.7.5 Room Temp Configurations

The room temp probe configurations and the alarm limits can be configured in the following screens. The Room Temp Sensor – supply air temp setpoint reset can be enabled or disabled.

Room Temp Sens Conf Use Room Temp Sens	Room Temp On/Off Con Bypass Sched Off On/Off on Demand OF
As TStat Disable	Hilin Unit On 79.0
On/Off Demand Disable (with Fixed DAT SPs)	COOL DAT SP 10.0 Low Lim Unit On 10.0 HEAT DAT SP 35.0

General Operating Instructions

5.7.6 Burner Configurations

Burner Warmup

Burner warmup is enabled by default; this will run the burner for the specified warmup time when the outside temperature is below the ambient enable setpoint.

Burner Cool Down

Burner cooldown is in automatic operation when the unit is running on heat and the heat was stopped. An anti-cycle timer prevents the burner from running again until the minimum OFF time is satisfied.

<mark>S Burner Cooldow</mark>	n Conf
Min Time	25s
Max Time	60s
Tar9et Heatrise	15.0±
Anticycle Times Min OFF Time Min ON Time	180s 1s

General Configurations

S Burner	Conf
General Anti-windup delay Anti-windup fact	30s 3.0
Burner Alm Tout LowPID Sat Time Economite Delay	180s 420s 60s

Burner Alarm Timeout – Burner Alarm Delay in case of Burner Failure

Low PID Sat Time- Burner Shut off Delay after the Heating Demand goes to 0%

Economite Delay – This is used for a rare type of Burner

Anti Wind Delay- To ensure Burner is cycling shortly.

Air Flow Switch

Burner airflow switch startup delay and alarm delay

5.7.7 Cooling Configurations

5.7.8 AHU Heat Recovery Config

This section is Visible only if the AHU has a heat recovery wheel or a CUBE Core.

The Below set points are used to prevent Frosting on Heat Wheel/Plates. The Heat Wheel/ Core Bypass Dampers starts modulating when The Exhaust Air Temperature drops below the following respective set points.

Bo	nfi9ure
Heat Recovery S	ettin9s
Frost Preventio	n Min
Exhaust Tempera	ture
HeatWheel:	1.05
PlateXchn:	4.4č

5.7.9 Airflow Configurations

The airflow stations can be configured in the following screens. Consult SolutionAir before making any changes. The end device (airflow/pressure transducer) must be configured and should be in sync with configurations in the CAREL controller.

Fresh Airf Sensor Type: Sensor Ran9es: Airflow Press 0.00to K Factor: Linearity:	000000001 1000 1000CFM 10000001 00000001 0.00
Supply Air Sensor Type: Sensor Ranges: Airflow Press 0.00to K Factor: Linearity:	Configure flow AIRFLOW 100.00"w 00000001 0.00
Return Air Sensor Type: Sensor Ran9es: Airflow Press Ø.00to K Factor: Linearity:	000019002 +100 AIRFLOW 100.00"w 0000001 0.00 0.00

Sensor Type: Airflow/Pressure

Sensor Ranges:

AIRFLOW: Please refer to the airflow station/differential pressure probe submittal and the fan submittal to determine the range. If this is being configured for airflow, leave the pressure range as it is and vice versa.

PRESSSURE: Please refer the differential pressure probe submittal and the fan submittal to determine the range, leave the airflow range as it is and vice versa.

K FACTOR: Refer to the fan submittal to determine the K factor(applicable only if the sensor type is pressure).

Linearity: Leave the linearity at 0.00 (unless specified in airflow/pressure probe submittal (applicable only if the sensor type is pressure).

General Operating Instruction

5.7.10 Duct Static Pressure Ranges

The supply and return duct static pressure ranges can be adjusted here. 228

5.7.11 Alarm Export

The alarm export option is used to export current active alarms for troubleshooting and diagnostic purposes.

This can beThis can be exported to USB or to the controller's internal memory (internal flash memory), which can be accessed via PC.

Modify the file number and change to **YES** to confirm.

Once exported, the following message appears.

5.7.12 Parameters Export

Follow the same procedure as Alarm Export to export the parameters list.

5.8 Schedule

Unit Operation

The unit schedule has 4 operating modes show below:

1. OFF (UNIT OFF)

- 2. --- (Not Applicable)
- 3. UNOCC (UNOCCUPIED MODE)
- 4. OCC (OCCUPIED MODE)

The unit will turn on only in the OCC mode and will shut down on all other modes.

All 3 schedules (**Daily, Vacation, Special days**) can be configured for the above operating modes.

Before Configuring the Schedule, ensure the **Controller Clock setting** are right and precise, to have proper working of the schedule as per the controller's clock setting.

To adjust the clock setting in the controller, please refer to **Clock Settings**

Schedule General operations

The scheduler is used for calendar scheduling management. To customize the device operating mode, it allows the following tasks:

- Daily Schedule (4 events per day)
- Vacation periods (3 Vacation Periods)
- Special Days (6 Special Days)

When the schedule is disabled, the screen looks like what is shown below in Figure;The scheduler home screen is empty.

NOTE: When the schedule is disabled, it will be in OCC mode by default.

When the schedule is enabled, the screen looks like what is shown below

It displays the following information on the scheduler home screen:

- Time
- Day
- Date
- Active Running Schedule (Daily Sched, Vacation Sched, Special Day Sched)
- Schedule Status (OFF, ---, UNOCC, OCC)

General Operating Instructions

When the daily scheduler is active, the screen looks like as show below:

When the vacation schedule is active, the screen looks like as shown below:

0		ULER		è	•
76	Enable	?		Yes	<u> </u>
Prg	08:59	TUE	26/04	~2022	۴
Esc	<u>Vacati</u> Unit s	<u>on sc</u> tatus	hed.ac :	tive OFF	≁

5.8.1 Daily Schedule

It is possible to set up to four daily events with weekly repetition. Every event requires to be enabled and correctly filled with the information regarding its starting hour and the device mode desired, choosing between OFF, ---, UNOCC, OCC modes.

The scheduler also offers the possibility to copy the configuration of a day in other days of the week, to avoid manually inserting the same configuration on different days.

NOTE: When the data are saved a coherence check is performed: if the user has enabled the event without setting a correct time (for example, the user has enabled the event but skipped to fill hours parameter which remains at zero), the incorrect event and all the next ones are disabled.

To copy a day schedule to other weekdays, set the 'Copy to' to the desired day (TUE, WED, THURS, FRI, SAT, SUN or ALL) and select 'OK?' to 'YES' and press 'ENTER'

Once enter has been pressed, the following message appears "DATA Correctly Copied"

A DAY: EVENTS Day: Monday Copy to: TUE Dk2Yes	↑
™ 1 08:00 OCC 2 2 17:00 UNOCC	ŧ
M A M A M DATA CORRECTLY COPIED	≁

Follow the same method for the rest of the weekdays or manually enter for each weekday.

The following example shows the Monday schedule copied to Tuesday.

All Weekdays: If the same schedule for all weekdays is desired, selecting ALL will copy the schedule to all weekdays.

5.8.2 Weekend Schedule (SAT, SUN)

If the jobsite has a different schedule for the weekends, the user can manually change the schedule for Saturday and Sunday as highlighted below or the user can enter the schedule for Saturday and copy it to Sunday as described above.

Â	DAILY EVENTS Day: Saturday	↑
973	☐ 1 00:00 OFF	4
Esc	□ 4: Save data? No	≁

5.8.3 Vacation periods

 It is possible to set up to three vacation periods by specifying the starting and the ending dates. For each period, it is necessary to set the device operating mode (OFF, ---, UNOCC, OCC).

NOTE: When the user is filling the parameters of the vacation period a coherence check is performed: if the starting and the ending dates are inconsistent OR if two periods are overlapped, the incorrect event/s and all the next ones are disabled, and an error message is shown as below

Vacation periods overlapped:

The vacation period should be identical and not overlapping with each other.

General Operating Instruction

Vacation period with inconsistent parameters:

The start date of the vacation period should always be lower than the end date.

5.8.4 Special days

• It is possible to set up to six special days with the priority on the normal daily configuration. For each special day it is necessary to set the date and the device operating mode (OFF, ---, UNOCC, OCC).

NOTE: When the user is filling the parameters of a special day a coherence check is performed: if two periods are overlapped an error message is shown.

Special days duplicated:

The special days should be identical to each other and not duplicated.

	↑
M 3 27/04 OFF 2 4 26/01 OFF	t.
ERROR: DUPLICATED DAYS	¥

Important Warnings

- Each start time of the 4 events must be higher than the previous. If an event is set to 23:59 then all the following events are forced disabled.
- It is not allowed to set a vacation period that straddles years. This means that the days and the months must be referred to the current year.
- If a vacation period is set, all the daily events related to those days are overwritten.
- If a special day is set, all the daily events and the days included in vacations periods related to that day are overwritten.

• AUTO:

When the special day is set to **AUTO**, it will follow the weekly day schedule on that date.

5.9 Alarm Logs

The alarm logs display the current active alarms in the unit. It displays the same **Alarm screens** that are displayed on pressing the alarm icon on the controller.

Main Menu 8/12	Data 1099er Record:01 81*120 12:36 04/10/22
G. Schedule	Sensor Fault Supply Air Temperature
B H. Alarm logs	Check Sensor Wiring Event: Start
📲 I. Settin9s	Memory Writes -999.9 -0.1

5.10 Settings

The settings tab displays the following sub-menu's configurations in the controller.

- Date/Time
- Language
- Serial Ports (MSTP-BACnet/MODBus)

5.10.1 Date/Time

The Date/Time menu allows the user to change the clock settings and the time zone.

5.10.2 Astronomical Timer

In Development, to be updated in Future releases.

(Allows the unit to enable and disable the unit based on sunrise and sunset timings)

S Astrono Enable Timer Lat.(+°N,-°S Long(+°E,-°W Cur.TimeZone	NC=1010CK NO : 0.00 : 0.00 : 0.00 CHICA
Sunrise:	00:00
Sunset:	00:00

General Operating Instructions

5.10.3 Language

Allows the user to change the language.

English is the default language.

5.10.4 BMS-BACnet/MODBus

Allows the user to update the network settings for BMS Integration via BACnet/MODBus.

NOTE: CAREL supports only BACnet & MODBus communication protocol via RS485 or IP

To update the IP address for BACnet IP or MODBus TCP communication, please refer Update IP address

The following parameters needs to be updated as per site network settings to enable BMS communication.

The following table illustrates which parameters are applicable for each specific communication protocol. Please disregard the remaining parameters.

	BACnet MSTP	MODBus RTU	BACnet IP	MODBus TCP
Enable Network	✓	~	~	✓
Baud Rate	\checkmark	✓		
Parity		~		
STOP Bits		~		
MAC	✓			
Device ID	~		~	
Max Master	~			

Enable Network: 0/1 (0 = Disable, 1= Enable) Baud Rate: (4800,9600,19200,38400,76800) Parity: None, ODD, EVEN **STOP Bits:** 0,1,2

MAC: 127 (0 to Max Master)

Device Id: BACnet Instance ID

Max Master: The maximum address for the MAC address.

Once the BMS network parameters are updated, verify that the BMS can communicate with the controller. Refer to the BMS Points List for BMS points integration

5.10.5 Override Network

If the controller is configured for BMS integration, BACnet/ MODBus has higher priority, i.e. certain overrides, setpoints performed locally on the controller will not be considered or they may be disregarded.

The user can manually disable the BACnet/MODBus communication on the controller. This is performed when the user wants the controller to operate stand-alone or to modify some parameters on the controller locally. Since the BMS has higher priority, disabling the network will allow the user to control the unit from the controller keypad.

Force Disable network: FALSE/TRUE

Setting this variable to FALSE will disable BACnet communication.

Network is MODBUS: FALSE/TRUE

Setting this variable to FALSE will disable Modbus communication.

Serial ports SUS 2020 CONSISTER SUB	1
(May require restart) (Values are RETAIN)	
Force Disable Network FALSE	
Network Is Modbus FALSE	

5.11 Commissioning

ia	in l	10. 10.	Z12
হ্য	Ι.	Settin9s	
ୟ	J.	Commissioning	
$^{\odot}$	к.	Runtime Hours	

The commissioning tab will help to perform factory tests and on-site tests at startup. This will ensure the unit's mechanical components are working as intended.

Once the user reaches the commissioning tab in the program menu, press enter and the following screen appears:

General Operating Instruction

Press **Up** and **Down** together and hold for 3 seconds. The following screen appears, use Up/Down keys to change to 'Start Factory Test' and press Enter.

Press Escape key to get back and press Program again to enter the following commissioning screens:

5.11.1.1 Factory Test

Perform the following instructions as prompts to perform the factory test. The instructions are in sequential order.

Press Program to move to Next Screen in Commissioning Mode

System On

Dutside Damper (close)	Dutside Damper (o	pen)
Turn system switch off	Turn system switc	h on
System Sw OFF	System Sw	OF
Damper End Sw OFF	Damper End Sw	OF
Ensure damper seals	Ensure damper op	ens
Shut and end sw off	and end sw prove:	S

Outside Air Damper - Fan Blower

Current Sensor Check
Please adjust the
relay
Supply Fan CSR OFF
Fan Start
Please turn system switch on Waiting for damper to
open Go to next menu when fan is up to speed
Burner Check (GP)
Flame Proof OFF
Burner_Out100%
Valve FB (PUC) 0% Inlet Air 0.0c Discharge Air-999.9c

Cooling

Circuit A

Cooling Check Circ A	Cooling Check Circ B
RunComp: ON ON HP	RunComp: ON ON HP
Tmp 32.0 32.0F	Tmp 32.0 PSIg 0.0
Pre 0.0 PSI9 0.0	Pre 0.0 PSIg 0.0
SHt 92.5 92.5:	SHT 92.5
SubCooling -92.5:	SubCooling -92.5#
Liquid Line Tmp 32.0F	Liquid Line Tmp 32.0F
EEV 82.0 4.00	EEV 82.0 0.0

Circuit B

Dehumidification

If the unit is configured for dehumidification, the following screen appears., During this testing, both the HGRH and HGBP valves are forced to 100%.

Once cooling and dehumidification testing are done, the following screen appears:

Coolin9 Test Done	
Coolin9 override has been disabled and setpoint restore	ed

Completed

n)

Once the commissioning process is complete, the display shows the following:

Commissionin9 Done	Commissioning while in the Commissioning Wizard:
You are Done!	Press Program key to continue Press Escape key to back up

Press Up and Down together and hold for 3 seconds, the following screen appears, use Up/Down keys to change to 'Abort Tests then wait to Ship" and press Enter.

Press PRG to exit the commissioning tab

General Operating Instructions

5.12 Run Time Hours

The runtime hours displays the run hours of the unit, compressor hours, burner stages and dehumidification circuit compressor hours as shown below:

5.13 Log out

Once complete with the changes/updates in the program menu, please log out. This will prevent unauthorized persons making changes to the controller/unit. This will also ensure and prompt to enter the password when logging back into the program menu.

Press enter to exit the program menu.

Once the user logs out and enters the program menu again, it will ask for the Password. Please ensure to check this step.

6 Controller Hardware Settings

To access the controller settings, press **Alarm** and **Enter** together for 3 seconds to enter the menu tree:

>	INFORMATION SETTINGS APPLICATION UPGRADE LOGGER DIGGEN DIGGENOSTICS
	DIAGNOSTICS

INFORMATION	PCO INFORMATION
	I/O INFO
	PLAN INFO
	FILESYSTEM INFO
	TASK INFO
	APPLICATION INFO
	BUILT IN INFO

SETTINGS	PASSWORD
	USB SETTINGS
	TERMINAL SETTINGS
	CLOCK SETTINGS
	TCP/IP SETTINGS

APPLICATION	PCO INFORMATION
	I/O INFO
	PLAN INFO
	FILESYSTEM INFO
	TASK INFO
	APPLICATION INFO
	BUILT IN INFO

UPGRADE

LOGGER	EXPORT LOGS
	RESTART LOGS
	FLUSH LOGS
	WIPE LOGS
DIAGNOSTICS	SYSTEM LOGS

General Operating Instruction

7 Installation and Maintenance

7.1 Uploading the Program/OS to the Controller

The program or OS can be uploaded into the controller by three different means:Menu Tree

- USB
- PC Laptop
- FTP

Once uploaded into the controller, the procedure of updating is the same.

7.1.1 USB

Copy the compiled Ap1 to a USB stick. The Ap1 file must be placed in a folder named **UPGRADE** that is put in the root directory of the USB drive.

						х
Cov + Computer + Removable Disk (H:) + UF	PGRAL	E	• 49 Sec	rch UPGRADE		p
Organize Share with Burn New folder					H • []	0
🔆 Favorites	-	Name	Date modified	Туре	Size	
E Desktop		ExampleProgram.ap1	10/5/2016 8:18 AM	AP1 File	3	19 KB
. Downloads						
22 Nevers Places						
😂 Libraries						

For the Mini controller, a USB key with a USB-Micro plug will be required:

For all other controllers, a standard USB stick is sufficient.

Plug the USB stick into the port on the controller and press and hold the **Alarm** and **Enter** for at least 3 seconds.

Scroll down using the arrow keys and select the **SETTINGS** menu and press **Enter**.

0	27/10/21 We	ed 16:44	↑
Pra	Solution/	Nir 👘	4
	Unit status:	OFF	×
Esc	OFF BY KEYBO	ARD CLO	*

Scroll down using the arrow keys and select the **USB SETTINGS** menu and press **Enter**

Ensure that the **Pen drive** is set to **Enable** and the status reads "**pen drive ready**"

Press the **Back** button twice to return to the main device configuration menu.

	=== USB HOST === Pen drive: > En === USB DEVICE ===	Ŷ
0	PC connection: En PCO disk: En	÷
5	Status: pendrive ready	Ŷ

Scroll down to the UPGRADE menu and press Enter.

The program that was loaded onto the USB stick should be visible on the screen, select it and press **Enter**.

Press **Enter** to confirm the upgrade and wait for the program to be loaded onto the controller. This may take a few minutes.

Once the upload is complete, press **Enter** to restart the controller.

Once the program has started up, testing of the unit may begin.

General Operating Instructions

7.1.2 PC Laptop

This procedure is performed if the controller needs to update or reflashes the system with a new program using the USB/mini cable.

(Access the cover within the USB link logo).	
•₽	

Locate the controller host USB Port.

Connect the USB printer cable (USB AB Cable) to the controller into the battery powered laptop or windows tablet.

1. Once connected, download the latest code then open the Windows file explorer and check the USB Drive: (controller memory, make sure no other USB device are plugin).

2. Copy and paste the latest OS or the AP1 file to the UPGRADE folder of the controller memory. Once the file is copied to the controller, refer to **Program/OS Upgrade**

-> ·· · US8 Drive (D:)				0
Source	^ Name	Date modified	Туре	Size
troubleshooting	HTTP	2019-04-02 4:34 PM	File folder	
OneDrive	II UPGRADE	1999-12-31 11:00 PM	File folder	
	III Error	1999-12-31 11:00 PM	Text Document	1
9 Ihis PC	Journal.dat	1999-12-31 11:00 PM	DAT File	10,240
3D Objects	Month4, AlPointDally	2021-05-13 8:03 PM	Microsoft Excel Com	103
Desktop	Month4, TempAndHum	2021-05-13 8:04 PM	Microsoft Excel Com	109
Documents	Month5 AllPointDaily	2021-10-14 9:46 PM	Microsoft Excel Com	129
Downloads	Month5_TempAndHum	2021-10-14 9:51 PM	Microsoft Excel Com	114
h Maria				

7.1.3 FTP

To Establish FTP connection

- 1. Connect the PC/Laptop to the controller via an Ethernet Cable (Cat 5/Cat 6) or ensure the controller and the computer are on the same LAN network.
- 2. Ensure the PC/laptop and the controller are in the same subnet and same IP address range.

CAREL	PC Internet Protocol Version 4 (TCP/IPv4) Properties ×
IP: 1/2.16.32.115 Mask: 255.255.252.0 GW: 172.16.32.1 DNS: 172.16.34.22	General You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate Partitings.
Update config? No	Obbian an IP address: IP address: IP address: Subnet make: 255,252,0 Default gateway: II2,16,32,2

- 3. To configure the laptop, refer to **Configuring the** Laptop 7.1.5
- 4. To configure the controller, refer to **Update IP Address 7.1.4**
- 5. Once the IP addresses are in the same range and subnet, go to File Explorer and type the controller's IP address in the address bar in the following format

ftp://ControllersIPAddress e.g.: ftp://172.16.32.115

General Operating Instruction

Inside the controller's folder, there should be an **UPGRADE** folder.

Copy and paste the latest OS or the AP1 file to the **UPGRADE** folder of the controller memory.

Once the Program or OS has been uploaded into the Controller via USB/PC/FTP, refer to **Program/OS Upgrade 7.2**.

7.1.4 Update IP Address

When the controller is connected to the LAN network/ PC, by default it will take DHCP (Auto) IP address. The IP address can be changed to a static IP address through the following steps.

Connecting a controller through IP enables FTP communication, Web Browser features including Data Logger.

From the PGD screen:

Hold Alarm + Enter for at least 3 seconds:

The controller will go into hardware setup, scroll down, and hit **Enter** on settings:

Scroll down using arrow keys and select TCP/IPv4 Settings:

By Default, the controller will be in DHCP/Auto IP when it's connected to the network/PC. This can be left as is if it is on the LAN network or it can be updated to a specific static

IP address if connecting a Laptop Directly to the controller or as per an IT request.

Enable: DHCP/AutoI IP: 172.16.33. Mask: 255.255.252. GW: 172.16.32. DNS: 172.16.34.	P 48 0 22
Update config? No	

To update to static IP address, change **enable** to **static**, and enter the relevant IP information:

	Enable: Static IP: 172.16.35.245	↑
\odot	Mask: 255.255.252. 0 GW: 172.16.32.1 DNS: 172.16.32.230	¢ L
5	Update config? No	↓

Important: Set update config to **YES** and press **Enter** to save the values.

To revert back to DHCP/Auto IP, change **enable** to DHCP and Update Config? To **YES**

7.1.5 PC - Controller Ethernet Connection

If connecting a PC/Laptop directly to the controller via RJ45, follow the below steps to update the network settings in the PC

- 1. Ensure the controller is connected to the PC via ethernet cable type RJ45
- Go to Control Panel -> View Network Status and Tasks (under Network and Internet)

3. Click on the Ethernet Connection that is visible in the PC and a dialogue box appears. Click **Properties** on the dialogue box as shown below:

on your base remove more more	and set up connections		
or your active networks			
CONTINUENCES FREECON Jomen Freihoft	Assestinger Corrections & <u>Description</u>		
ange poor ontworking rettings			
Maria a new connection or second. Second a breachand, Salvag, or SPA or	newfire; cristisp a cuterar accempaint.		
Degrace and reported and publics	s or get traublakesting information.	1 Bend/Jala	×
		General	
		Court in	
		P+1Camult.fp	Farm
		ProCanadada	To school as as
		Partia Date:	Ended
		Curvitors	0.4315
		Databa .	1712
		14.0	
		Set	👰 — 1444
		ba: 6,27.6	21.21.41
		Gharm Ghan	Depen
			Owe

General Operating Instructions

- 4. Scroll down to Internet Protocol version 4 (TCP/IPv4) and click **properties**.
- 5. A new pop-up box appears, click on '**use the Following IP Address**' and enter the required IP address (ensure the controller and the PC are in the same IP range and subnet) and then click **OK**

6. Enter the controller's IP address in a web browser to check if the PC is communicating with the controller.

7.2 Upgrading the Program/OS in the Controller

Press and hold the '**Alarm'** and '**Enter'** for at least 3 seconds.

The unit will enter the hardware setup menu.

Scroll down to the "UPGRADE	" menu and press "Enter"
-----------------------------	--------------------------

The program that was loaded onto the USB stick should be visible on the screen, select it and press "**Enter**"

Press "**Enter"** to confirm the upgrade and wait for the program to be loaded onto the controller. This may take a few minutes.

During the upgrade, the following sequence will prompt into the display:

Once upload is complete, press **"Enter"** to restart the controller.

If there are any issues during upgrade, please contact SolutionAir.

Once the program has started up, testing of the unit may begin. The user can either initiate commissioning or skip the commissioning process by following the steps below:

- 1. Skip the commissioning page by aborting the test. Pressing the **Up** and **Down** arrow keys together for 3 seconds will proceed to commissioning page setup.
- 2. Press arrow down button to find the abort tests and then press **Enter** button again to toggle the commissioning done into **YES**.

General Operating Instruction

3. Press **Return** button to escape, and it should proceed to home page.

7.3 Log Transfer

The Logs can be exported either to an USB or to a PC/ Laptop.

7.3.1 USB

Locate the controller host USB Port.

Plug in the thumb drive. There are two options to link the thumb drive into the controller as shown below:

In this method the male micro-USB to female USB adapter cable was used.

1. Access the main screen of the controller, press and hold the **Alarm** and **Enter** for at least 3 seconds until the home display shifts to the other option display (labeled as warning symbol or bell symbol and as arrow to the left symbol).

2. Navigate to the menu option and select **"logger"** using the arrow down button and then press **Enter** button.

Â		INFORMATION SETTINGS OPPLICATION	↑
Prg	>	UPGRADE LOGGER	¥
Esc		DIHGNOSTICS	¢

3. Select the option **"export logs"** and it will proceed to download the log files from the controller onto the USB.

Ŗ	> EXPORT LOGS RESTART LOGS FLUSH LOGS	↑
Prg	WIPE LOGS	۲
Esc		¥

4. Select "[export all]" and press Enter.

Ŗ	> [export all] FLT_CircuitAFault_5m FLT_CircuitEFault_5m	1
Prg	FLT_CircuitCFault_5m FLT_CircuitDFault_5m	4
Esc	OP_Cooling_4Day OP_DetailedCooling_2	¥

5. During download, the screen should show this page:

Ŗ	Export FLT_CircuitDFault_5min	↑
Prg		t
Esc		≁

 Once the download has been successful, press the Escape button (labeled as Esc or Undo) until the home screen is displayed. Unplug the USB thumb drive and verify the files.

Ŗ	Log operation done successfully	↑
Prg		۴
Esc	Press ENTER	Ŧ

NOTES: By default, navigating the controller USB drive folder to verify the logs, will show an empty excel log file. The logs will appear in the folder only if step 4 to 6 is completed. This is true whether downloading the file via USB or laptop.

General Operating Instructions

7.3.2 Laptop/PC

If exporting via a laptop/PC, refer to connect laptop via **USB** or **FTP** and copy the logger files from the controllers folder to the computer's local memory

Log files in the controller's memory, accessed via FTP are shown below:

P > The Internet > 172.16.33.	.48 >		
	^	Name	~ Date
C:)		НТТР	10/1
GFILE01) (H:)		UPGRADE	12/3
file01) (M:)		AL_EXPORT_1.csv	10/1
ndling (\\agifile02) (P:)		Error.log	12/3
e		FLT_CircuitAFault_5min.csv	10/1
ation		🕼 FLT_CircuitBFault_5min.csv	10/1
		🕼 FLT_CircuitCFault_5min.csv	10/1
er Jobs		🗐 FLT_CircuitDFault_5min.csv	10/1
ns		FLT_HeatingFault_5min.csv	10/1
		📄 Journal.dat	12/3
LT		Dp_Cooling_4Day.csv	10/1
LT INCOMING		OP_DetailedCooling_24Hr.csv	10/1
21		🖾 Op_Econo_4Day.csv	10/1
s		🕼 Op_Heating_4Day.csv	10/1
		🕼 Operation_6Month.csv	10/1
ita		🕼 Operation_7Day.csv	10/1
ng controlled documents			

7.4 Wipe Retain and Restart Application

This procedure is performed if the controller freezes and/ or there is a memory error alarm.

Screen Description	Description	
STOP APPLICATION	To stop/re-start execution of	
START APPLICATION	the application program	
RESTART APPLICATION	Corresponds to STOP + START	
WIPE RETAIN	The "Retain" variables return to the default values	
WIPE NVRAM	Clear clock or RAM buffer memory: this stores the values of parameters that change often, such as counters (if configured in the application)	

NOTE: Perform Wipe Retain FIRST and then Restart Application

7.4.1 Wipe Retain

Access the main screen of the controller, press and hold the **Alarm** and **Enter** for at least 3 seconds until the home display shifts to other option display (labeled as warning symbol or bell symbol and arrow to the left symbol).

Navigate to the menu option and select **"application"** using the arrow down button and then press **Enter** button.

Select the option **"wipe retain"** and it will proceed to wipe and retain process.

During the wipe retain process the display will show loading as shown below:

Once the wipe retain has been successful, the controller will show SolutionAir page display and then will prompt to the language confirmation. Press the **Enter** button to confirm and will return to the main page

A	Lan9ua9e:	•
***	Language: ENGLISH	<u> </u>
Prg	<u>UP_to</u> change	4
Esc	ENTER to confirm	Ŧ
LSC	Show mask time 29	

7.4.2 Restart Application

Follow the same procedure as above

General Operating Instruction

8 Alarms

When an alarm is triggered, the alarm button on the controller turns **RED**.

Pressing the **alarm button** takes the user to the list of active alarms.

8.1 Alarm Screen

The alarm screen displays the following Information:

- 1. Alarm ID
- 2. Time and date when the alarm was triggered
- 3. Total active alarms
- 4. Description of the alarm
- 5. Sensor or associated variable value when the alarm was triggered. *

***NOTES:** Two parameters can be linked to an alarm and not all alarms will have associated variables. This is useful in diagnosing what caused the alarm, e.g. the below low suction alarm is lined with suction pressure and EEV valve position. In this example, the valve position was 0% and suction pressure was 0, which caused the low suction pressure alarm.

8.2 Alarm Reset

The alarms lists include both auto reset and manual reset alarms. To determine which alarms are configured as auto or manual reset, refer to the **Alarm Summary**.

Auto reset alarms reset automatically once the trigger condition is back to normal.

Manual reset alarms require manual reset by the operator, even when the trigger condition is back to normal. Mostly critical alarms in the unit are configured as manual reset alarms.

These alarms can also be reset from the BMS.

NOTE: When the trigger condition is true, resetting the alarms will not RESET the alarm, so please ensure the issue is fixed/checked/sorted before resetting the alarm.

A	Marms - Press OLOPM for 7s	↑
Prg	to reset all alarms	¥
Esc	Press ENTER to DATA LOGGER	≁

To reset the alarms, press the **enter key** and **alarm key** together for 3 seconds.

8.3 Troubleshooting Alarms

Though the alarm screen displays enough information regarding the alarm, sometimes further details are required for troubleshooting.

	Alarm ID	Alarm Name	
Enter Alarm ID Here->	180	ALDX Circ A Fit	
	Alarm Reset Type		Auto reset until counter
		Circuit A ou	adaad oo hish oo low peaceure switch
<u>0</u>	Alarm Description	Circuit A G	enous of high of low pressure switch
		G#	wit & Compressor Shut Down
	Interlocks		
		The Alarm is Triggered when the Circuit Trips on	Compressor safety interlock (High pressure Switch) When the Compressor
	Alarm Sequence (Customer)	Di	scharge pressure is > 400 PSI
		When the SensorCheckEnable is	True and Circ_A_Ok_Din.Bval is False, Alarm is Triggered.
	Alam Sequence (Solution Air)		
	Alarm belay	400 PSI	Hard Value on the Device
	Variable/Parameters to check for	16.0 F.1	Pard value on the Device
	(Solution Air)	Suction_Press_A_Prb.AVal	LiqLine_Press_A_Prb.AVal
Galation Arri		1.Check for Possible Dirr in the screen, blocked ne	eSe vahej(EP)

SolutionAir has created an alarm troubleshooting tool to help technicians in the field diagnose/troubleshoot alarms.

To access the alarm troubleshooting tool, use the QR code or click on the link below. Enter the alarm ID from the alarm screen into the alarm troubleshooting tool to see the alarm delay, alarm set point, variables associated and the troubleshooting guidelines to fix the issue.

Link: <u>https://solutionairgroup.com/alarm-assistant/</u> Please contact SolutionAir for further assistance.

General Operating Instructions

9 Connecting to the Web server

All SolutionAir controllers are equipped with built-in web server that allows the user to connect to the controller via a web browser (Google Chrome/Microsoft Edge for example).

Once the controller is on the network or connected directly to a PC (refer to configuring PC), type the IP address of the controller in a web browser.

The following home page opens, which shows the

- Job number
- Job name
- Software version

Each tab in the home page are explained below:

9.1 PGD- Controller Web Display

Clicking the PGD Tab displays the following web page, which is the exact mirror of the display screen on the controller. Any buttons clicked, will be executed on the controller as well. It is useful when the controller on the unit is very hard to access. Any actions on the controller can be performed by accessing the PGD screen through the web server.

9.2 Alarms

Clicking on the alarms tab displays the following alarm summary web page:

							C.	PCO AL					
Refres	Refresh interval seconds (0 for "no refresh"): 0 Update refresh interval												
Rese	all alarms												
Wipe	history												
								_					
ID	Name	Start time	Stop time	Var 1 start	Var 2 start	Var 1 stop	Var 2 stop						
69	Al_SF_VFD_Flt.Active	2022/10/17 18:06:20	N/A	0.000000	0.000000	N/A	N/A	Reset					
73	AI_RF_VFD_Flt.Active	2022/10/17 18:06:20	N/A	0.000000	0.000000	N/A	N/A	Reset					
117	Al_FA_Temp_Sensor_Fit.Active	2022/10/17 18:07:28	N/A	-999.900000	-1	N/A	N/A	Reset					
119	Al_RA_Temp_Sensor_Flt.Active	2022/10/17 18:07:28	N/A	-999.900000	-1	N/A	N/A	Reset					
120	Al_SA_Temp_Sensor_Flt.Active	2022/10/17 18:07:28	N/A	-999.900000	-1	N/A	N/A	Reset					
	Al_RegenLostPositionA_Flt.Active	2022/10/17 18:06:56	N/A			N/A	N/A	Reset					
166													

The information available on the alarms web page are pretty much the same as what is available on the PGD **Alarm Screen 8.1**.

The additional information available on the alarm web page are as follows

- **Stop time:** The time at which the alarm was reset (Auto/Manual)
- Var1 & Var 2 Stop: The variables value when alarm was reset

9.2.1 Wipe Alarms History

Clicking the **wipe history button** will clear all the past alarm logs from the controller memory (the active alarms will be retained in the memory).

• **Reset:** In the alarms web page, alarms can be reset individually, unlike the PGD Screen, where all alarms must be reset together.

9.3 Logger – Point Trends

9.3.1 Datalogger

The datalogger tab is useful for unit diagnostic and troubleshooting purposes.

The following data logs are available on the controller for different modules. Choose the right log to get the desired variable log data for troubleshooting.

General Operating Instruction

9.3.2 Setting up the Data Logger

Log to Load: Select the desired log to be accessed

Time Format: Ensure the time format is in c.PCO time

Start Time: If desired, fill in the log to start at a specific time. If not, leave it blank.

Stop Time: If desired, fill in the log to stop at a specific time. If not, leave it blank

Load Log Data: Click on load log data to load the point trend.

Save Log Data: Clicking save load data will download an Excel sheet instead of a graph on the web page. This will be useful for documenting purposes or for further data analysis.

Quick Load: The quick load option loads or saves the log without having to fill in the start time and stop time.

The quick load option loads/saves the log based on the log data memory capacity.

9.3.3 Live Trend

The live log is useful to monitor the live trend of the parameters.

This is useful during commissioning, testing or for **PID Tuning**. To view the live log trend, follow the below steps:

1. Click Show/Hide Variables, on clicking, all parameters list will be displayed.

		CIRCUITS	PGD	VARIABLES	ALARMS			
	_							
	Data	alogger Live						
Scan	period	presets: 1 second V Appl	¥					
Scan	period	(seconds): 1	(min=1, max=600)					
Grap	h time :	span (minutes): 1	(min=1, max=25)					
Sele	ted va	riables:						
Sho	w/Hic	de variables 🕨 Save live data						
Trac	e ID	Name		Current Value	Description			
	80	AL_126.Active		0	Automatic generated by Alarm editor - Alarm status			
	81	AL_126.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			
	82	AL_176.Active		0	Automatic generated by Alarm editor - Alarm status			
	83	AL_176.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			
	84	AL_DX_CondensateOverflow.Active		0	DX Drain Pan Condensate Overflow condition detected - Alarm statu			
	85	AL_DX_CondensateOverflow.Trigger		0	DX Drain Pan Condensate Overflow condition detected - Alarm statu			
	86	AL_EvapLeaving_Temp_Sensor_Fit.Activ	0	0	Evaporator Leaving Air Temperature Sensor Fault - Alarm status			
	87	AL_EvapLeaving_Temp_Sensor_Fit.Trigg	er	0	Evaporator Leaving Air Temperature Sensor Fault - Alarm status Trig			
	88	AL_SA_Sensor_Network_Fit.Active		0	Supply air Network Sensor Fault - Alarm status			
	89	AL_SA_Sensor_Network_Fit.Trigger		0	Supply air Network Sensor Fault - Alarm status Trigger			
	90	AL_VFD_Offline_Cond_B Active		0	VFD for Cond B offline - Alarm status			
	91	AL_VFD_Offline_Cond_B.Trigger		0	VFD for Cond B offline - Alarm status Trigger			
	92	AI_10.Active		0	Automatic generated by Alarm editor - Alarm status			
	93	Al_10.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			
	94	AI_102.Active		0	Automatic generated by Alarm editor - Alarm status			
	95	AI_102.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			
	96	Al_103.Active		0	Automatic generated by Alarm editor - Alarm status			
	97	AI_103.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			
	98	Al_104.Active		0	Automatic generated by Alarm editor - Alarm status			
	99	Al_104.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			
	100	AI_105.Active		0	Automatic generated by Alarm editor - Alarm status			
	101	Al_105.Trigger		0	Automatic generated by Alarm editor - Alarm status Trigger			

Choose the desired variables to be viewed on the live trend. For example, troubleshooting/tuning a heating control, click on Sa_Temp_Prb.Aval, Heat1_Aout.Aval, and SA_Temp_SP_Internal.

Consult SolutionAir for point variables reference.

General Operating Instructions

Scan Period: It is suggested to give 1 seconds, the controller will scan every one second and will not miss out on any sudden variation.

Time Span: Give the maximum value of 25 minutes, so the graph can hold value for the last 25 minutes.

Once the details have been filled out and the variables have been selected, click on the **Play** icon.

Datalogger Live	
Scan period presets: 1 second 🗸	Apply
Scan period (seconds): 1	(min=1, max=600)
Graph time span (minutes): 25	(min=1, max=25)
Selected variables: Heat1_Aout.AVal, SA	Temp_Prb.AVal, SA_Temp_SP_Internal
Show/Hide variables Save live d	ata
Datalogger Live Scan period presets: 1 Second	Apply
Scan period (seconds):	(min=1, max=800)
Graph time span (minutes): 25	(min=1, max=25)
Selected variables: Heat1_Aout.AVal,	SA_Temp_Prb.AVal, SA_Temp_SP_Internal
Show/Hide variables Save li	ve data

The plot will begin and can be observed over time. The trend will start updating for every one second (scan period). Once the Tuning/Troubleshooting is complete, the Live data can be saved for reference/documentation.

Save Live Data

To save the live data, hit the **Stop** icon and click on **Save Live Data**. The following Excel sheet Live_data.csv will be downloaded:

9.4 Control Program/OS Upgrade

The control program (. Ap1 File)/OS can also be uploaded through the web server using the following steps:

- 1. Click on the **upgrade** tab.
- 2. Choose the desired .AP1 file (control program) or the controller OS to upload.

- 3. Click upload AP1 to c.PCO
- 4. Once the file has been uploaded into the controller, it prompts the following message:

App Upgrade Confirm? Click OK

	CIRCUITS	PGD
SITE MAP		
DEMO		
PGD VARIABLES ALARMS NET STATS	Choose File EA88 Upload AP1 to c.pC	v4 ELPv40.18.ap1
LOGGER UPGRADE	Upload progress:	
	100%	
HOME	Upgrade progress:	
	0%	
pp upgrade onfirm? Ok Cancel		

5. A progress bar appears indicating if the upgrade has been completed or not. Once the upgrade is completed, press **OK** and wait a couple of minutes. Then the controller should be updated with latest program/ OS.

CIDCUITE	PCD.	CIRCUITS	PGD
STE MAP 6210 VALABLES Choose File EA88 v4 EL5 Lipicad AP1 to e.pCO	v40.18.ap1	STE MAP 0 EHO PO VILIZATIES VILIZATIES Choose File BASS v4 5 VILIZATIES Upload AP1 to c.pCO LOO(10)	LPv40.18.ap1
Upicad progress: Upicad progress: 100% Upgrc e progress: 24%		UPGRADE Upload progress: 100% 1041 Upgrade progress:	_
Application: Install new		Reboot needed	

NOTE: The PGD screen can be watched at the same time via web page to observe the upgrade process.

10 Remote User Terminal

The remote user terminal module is the exact mirror screen of the controller.

It is an optional component in the unit, and it can be panel mount or wall mount.

This allows the user to monitor and override all the information and settings available on the controller.

The remote user terminal does not have any I/O terminals to connect any devices and it does not have any ports to integrate BMS or connect PC.

The user will be able to view, read and write parameters and options available via the display screen.

Any hardware connections or file exports and imports must be done directly on the controller mounted on the unit.

General Operating Instruction

11 BMS Points List (BACnet/MODBus)

BA	Cnet		Мо	dbus	Variable	Unite	Bood /Write	Description
Instance	Туре	Instance	Size	Туре	Variable	Units	Read/write	Description
AI 1	Analog	0	2	InputPegister	FreshAirTemp	°F	Read Only	Measured temperature of
AI101	Input	100	2	Inputregister	FreshAirTemp	°C	Read Only	outside/fresh air
AI 2	Analog	2	2	InnutRegister	SupplyAirTemp	°F	Read Only	Measured Discharge/Supply
AI 102	Input	102	2	inputtegister	SupplyAirTemp_C	°C		air temperature
AI 3	Analog	4	2	InnutRegister	ReturnAirTemp	°F	Read Only	Measured return air
AI 103	Input	104	2	inputtegister	ReturnAirTemp_C	°C	includ Only	temperature
AI 4	Analog	6	2	InnutRegister	MixedAirTemperature	°F	Read Only	Measured temperature after
AI 104	Input	106	2	inputtegister	MixedAirTemperature_C	°C	neud Only	mixing fresh & return air
AI 5	Analog	8	2	InnutRegister	EvaporatorLeavingAirTemp	°F	Read Only	(Reheated systems only)
AI 105	Input	108		inputtegister	EvaporatorLeavingAirTemp_C	°C		dewpoint of supply air
AI 6	Analog	10	2		ExhaustAirTemp	۴F		(Dual air path only)
AI 106	Input	110	2	InputRegister	ExhaustAirTemp_C	°C	Read Only	exhausted return air leaving temp
AI 7	Analog	12	2	InputDogistor	SpaceTemp	۴F	Dead Only	Measured Room / Space
AI 107	Input	112	2	Inputkegister	SpaceTemp_C	°C	Read Only	temperature
AI 10	Analog Input	18	2	InputRegister	SpaceCO2	PPM	Read Only	Measured Room / Space CO2 level in PPM
AI 11	Analog Input	18	2	InputRegister	SpaceCO2	PPM	Read Only	Actual Discharge/Supply air carbon monoxide in PPM
AI 12	Analog Input	20	2	InputRegister	SupplyCO	PPM	Read Only	Measured Supply / Discharge CO2 level in PPM
AI13	Analog Input	22	2	InputRegister	SupplyCO2	PPM	Read Only	Measured Return CO2 level in PPM
AI 20	Analog Input	24	2	InputRegister	ReturnCO2	PPM	Read Only	Measured RH of outside air
AI 21	Analog Input	38	2	InputRegister	FreshAirHumidity	%RH	Read Only	Measured RH of supply/ discharge air
AI 22	Analog Input	40	2	InputRegister	SupplyAirHumidity	%RH	Read Only	Measured RH of return air (room sample)
AI 23	Analog Input	42	2	InputRegister	ReturnAirHumidity	%RH	Read Only	Measured RH of air after mixing fresh and supply air
AI 24	Analog Input	44	2	InputRegister	MixedAirHumidity	%RH	Read Only	Measured RH of room/ space air
AI 30	Analog Input	46	2	InputRegister	SpaceHumidity	%RH	Read Only	Measured CFM of fresh air path
AI 31	Analog Input	58	2	InputRegister	FreshAirAirflow	CFM	Read Only	Measured CFM of supply / unit discharge
AI 32	Analog Input	60	2	InputRegister	SupplyAirAirflow	CFM	Read Only	Measured CFM of return air path
AI 33	Analog Input	62	2	InputRegister	ReturnAirAirflow	CFM	Read Only	Measured DSP of the supply duct
AI 34	Analog Input	64	2	InputRegister	SupplyDuctStaticPress	"WC	Read Only	Measured DSP of the return duct

General Operating Instructions

BACnet		Modbus			Variable		D 1/14/11	Deve faither	
Instance	Туре	Instance	Size	Туре	Variable	Units	Read/Write	Description	
AV 1	Analog	0	2		SP_SupplyAirTemp	°F		Discharge/Supply Air	
AV 101	Input	100	2	InputRegister	SP_SupplyAirTemp_C	°C	Commandable	Temperature setpoint in °F (or °C)	
AV 2	Analog	2	2	LlaldingDagistar	SP_SpaceTemp	°F	Common dable	Room/Space temperature	
AV 102	Input	102	2	HoldingRegister	SP_SpaceTemp_C	°C	Commandable	setpoint (for reset)	
AV 3	Analog	4	2	HoldingDogistor	SP_SpaceDewpoint	°F	Commandable	Room/Space dewpoint	
AV 103	Input	104	2	HoldingRegister	SP_SpaceDewpoint_C	°C	Commanuable	setpoint (max. target)	
AV 4	Analog Value	6	2	HoldingRegister	SP_MaxFreshAirPcnt	%	Commandable	Maximum fresh air setpoint in %	
AV 5	Analog Value	8	2	HoldingRegister	SP_MinFreshAirPcnt	%	Commandable	Minimum fresh air setpoint in %	
AV 6	Analog Value	10	2	HoldingRegister	SP_SupplyFanSpeedPcnt	%	Commandable	Supply Fan Speed	
AV 7	Analog Value	12	2	HoldingRegister	SP_ReturnFanSpeedPcnt	%	Commandable	Return Fan Speed	
AV 8	Analog Value	14	2	HoldingRegister	SP_SupplyDuctStaticPress	"WC	Commandable	Target supply duct static pressure	
AV 9	Analog Value	16	2	HoldingRegister	SP_ReturnDuctStaticPress	"WC	Commandable	Target return duct static pressure	
AV 10	Analog Input	18	2		BMSRoomAirTemp	°F	Commendable	Space Temperature, if	
AV114	Analog Input	106	2	Holdingkegisler	BMSRoomAirTemp_C	°C	Commandable	sensor by BMS	
AV 11	Analog Input	20	2	HoldingRegister	BMSFreshAirTemp	°C	Commandable	Space Temperature, if sensor by BMS	
AV 12	Analog Input	22	2	HoldingRegister	BMSRoomAirDewpoint	°F	Commandable	Room Air Dewpoint Temperature if sensor by BMS	
AV 112	Analog Input	108	2	HoldingRegister	BMSRoomAirDewpoint_C	°C	Commandable	Room Air Dewpoint Temperature if sensor by BMS	
AV 13	Analog	24	2	HoldingDogistor	SP_MixboxAirTemp	°F	Commandable	Mixbox Air Temperature	
AV 113	Input	124	2	HoldingRegister	SP_MixboxAirTemp_C	°C	Commandable	setpoint in °F (or °C)	
AV 14	Analog Value	26	2	HoldingRegister	SP_MaxReturnAirPcnt	%	Commandable	Maximum Return air setpoint in %	
AV 15	Analog Value	28	2	HoldingRegister	SP_MinReturnAirPcnt	%	Commandable	Minimum Return air setpoint in %	
AV 16	Analog Value	30	2	HoldingRegister	SP_CO2_Threshold	PPM	Commandable	Threshold for CO2 Logic to become active	
AV 17	Analog Value	32	2	HoldingRegister	SP_CO2_FADemand	%	Commandable	Fresh Air Demand for CO2 logic	
AV 18	Analog Value	34	2	HoldingRegister	SP_SupplyAirflowCFM	CFM	Commandable	Target supply airflow	
AV 19	Analog Value	36	2	HoldingRegister	SP_ReturnAirflowCFM	CFM	Commandable	Target return airflow	
AV 40	Analog Value	78	2	InputRegister	FreshAirPcnt	%	Read Only	Current Fresh air damper position	

General Operating Instruction

BACnet		Modbus			Variable		Deed/Weite	Description	
Instance	Туре	Instance	Size	Туре	variable	Units	Read/write	Description	
AV 41	Analog Value	80	2	InputRegister	ReturnAirPcnt	%	Read Only	Current Return air damper position	
AV 42	Analog Value	82	2	InputRegister	HeatingDemand	%	Read Only	Current Heating Demand from Heating PID	
AV 43	Analog Value	84	2	InputRegister	CoolingDemand	%	Read Only	Current Cooling Demand from Cooling PID	
AV 44	Analog Value	86	2	InputRegister	HeatWheelDemand	%	Read Only	Current Commanded Heatwheel Speed	
AV 45	Analog Value	88	2	InputRegister	CubeBypassDamperDemand	%	Read Only	Current Cube Bypass Damper position	
AV 46	Analog Value	94	2	InputRegister	SupplyanSpd	%	Read Only	Current Supply Fan Speed Signal	
AV 47	Analog Value	96	2	InputRegister	ReturnFanSpd	%	Read Only	Current Return Fan Speed Signal	
AV 56	Analog Value	56	2	HoldingRegister	RegenCore. HeatRecoveryCycleTime	Seconds	Commandable	Time in Second for one complete cycle (2 damper changes) in ER mode	
AV100	Analog Value	200	2	HoldingRegister	AlarmMng.BMS_Alarm_ID			Active Alarms ID's, Refer Alarm Summary for Alarm Description	
IV 54	Integer Value	54	2	HoldingRegister	RegenCore. FreeCoolingCycleTime	Minutes	Commandable	Time in Minute for one complete cycle (2 damper changes) in FC mode	
IV 31	Integer Value	90	2	InputRegister	Num_Alarms		Read Only	Number of active alarms	
IV 32	Integer Value	92	2	InputRegister	Num_Warnings		Read Only	Number of active warnings	

All heaters installed on the floor must have a minimum clearance of 3" (76mm) which is provided by the heaters base frame.

General Operating Instructions

BACnet		Modbus		Variable Inactive	Active	Dood /Write	Description		
Instance	Туре	Instance	Size	Туре	variable	Text	Text	Read/ Write	Description
BV 1	Binary Value	0	1	Coil	Unit_Run	OFF	ON	Commandable	Unit Run Command
BV 2	Binary Value	1	1	Coil	AlrmResByBMS	-	Reset	Commandable	Toggle Point to Reset Active Alarms
BV 10	Binary Value	9	1	DiscreteInput	Unit_InAlarm	ОК	InAlarm	Read Only	When true, unit has alarm but may still be operational
BV 11	Binary Value	10	1	DiscreteInput	Unit_ SeriousAlarm	ОК	InAlarm	Read Only	When true, unit has shutdown due to a serious alarm
BV 12	Binary Value	11	1	DiscreteInput	Dirty_FreshAir_ Filter_Alm	Clean	Dirty	Read Only	Pressure drop on Fresh Air filter high
BV 13	Binary Value	12	1	DiscreteInput	Dirty_FreshAir_ Prefilter_Alm	Clean	Dirty	Read Only	Pressure drop on Fresh Air prefilter high
BV 14	Binary Value	13	1	DiscreteInput	Dirty_ ReturnAir_ Filter_Alm	Clean	Dirty	Read Only	Pressure drop on Return Air filter high
BV 15	Binary Value	14	1	DiscreteInput	Dirty_ ReturnAir_ Prefilter_Alm	Clean	Dirty	Read Only	Pressure drop on Return Air prefilter high
BV 21	Binary Value	20	1	DiscreteInput	Cooling_CircA_ Fault	ОК	FAULT FAULT	Read Only	Cooling Circuit A has a fault
BV 22	Binary Value	21	1	DiscreteInput	Cooling_CircB_ Fault	ОК	FAULT	Read Only	Cooling Circuit B has a fault
BV 23	Binary Value	22	1	DiscreteInput	Cooling_CircC_ Fault	ОК	FAULT	Read Only	Cooling Circuit C has a fault
BV 24	Binary Value	23	1	DiscreteInput	Cooling_CircD_ Fault	ОК	FAULT	Read Only	Cooling Circuit D has a fault
BV 30	Binary Value	30	1	DiscreteInput	Compressor_ A1_Running	OFF	ON	Read Only	Compressor 1 of circuit A is running
BV 31	Binary Value	31	1	DiscreteInput	Compressor_ A2_Running	OFF	ON	Read Only	Compressor 2 of circuit A is running
BV 32	Binary Value	32	1	DiscreteInput	Compressor_ B1_Running	OFF	ON	Read Only	Compressor 1 of circuit B is running
BV 33	Binary Value	33	1	DiscreteInput	Compressor_ B1_Running	OFF	ON	Read Only	Compressor 2 of circuit B is running
BV 34	Binary Value	34	1	DiscreteInput	Compressor_ C1_Running	OFF	ON	Read Only	Compressor 1 of circuit C is running
BV 35	Binary Value	35	1	DiscreteInput	Compressor_ C2_Running	OFF	ON	Read Only	Compressor 2 of circuit C is running
BV 36	Binary Value	36	1	DiscreteInput	Compressor_ D1_Running	OFF	ON	Read Only	Compressor 1 of circuit D is running
BV 37	Binary Value	37	1	DiscreteInput	Compressor_ D2_Running	OFF	ON	Read Only	Compressor 2 of circuit D is running
BV 50	Binary Value	50	1	DiscreteInput	Heat1_Running	OFF	ON	Read Only	Stage 1 Heat Running
BV 51	Binary Value	51	1	DiscreteInput	Heat2_Running	OFF	ON	Read Only	Stage 2 Heat Running
BV 52	Binary Value	52	1	DiscreteInput	Heat3_Running	OFF	ON	Read Only	Stage 3 Heat Running

General Operating Instruction

BA	BACnet Modbus		bus	Variable	Inactive	Active	Dood /Write	Description		
Instance	Туре	Instance	Size	Туре	variable	Text	Text	Read/ Write	Description	
BV 53	Binary Value	53	1	DiscreteInput	Heat4_Running	OFF	ON	Read Only	Stage 4 Heat Running	
BV 54	Binary Value	54	1	DiscreteInput	SupplyFanCSR	OFF	ON	Read Only	Status of Supply Fan Current Sense Relay	
BV 55	Binary Value	55	1	DiscreteInput	ReturnFanCSR	OFF	ON	Read Only	Status of Return Fan Current Sense Relay	

General Operating Instructions

BA	Cnet		Мо	dbus	Vaviable	Deed /W/vite	Description
Instance	Туре	Instance	Size	Туре	variable	Read/write	Description
MSV 1	Multistate Value	1000	1	HoldingRegister	Unit_Mode_ Override <i>Unit_Mode_Override_</i> <i>Default</i>	Commandable RelinquishDefault	Set to force unit into the following modes: 1=Auto (Normal) 2=ForceDehum 3=ForceEcono 4=ForceHeating 5=ForceCooling 69=Reserved 10=ForceOff
MSV 2	Multistate Value	1000	1	InputRegister	Unit_Status	Read Only	Unit Status: 1=Unit On 2=Off due to alarm 3=Off due to BMS 4=Off due to Schedule 5=Off due to System Switch 6=Off due to Keypad Enable 7=Off due to Interlock 8=Manual Mode 9=Unit in Startup Sequence
MSV 3	Multistate Value	1001	1	InputRegister	Unit_SystemStatus	Read Only	Unit mode enumeration: 1=Unit Off 2=Dehum 3=Econo 4=Heating 5=Cooling 6=Burner Warmup 7=Burner Cooldown 8=Damper Opening 9=Smoke Purge Sequence
MSV 11	Multistate Value	1010	1	HoldingRegister	PRC_ DamperMode_ Overide_BMS	Commandable	Set to force unit into the following modes: 1=Auto (Normal) 2=ForceEnergyRecovery 3=ForceFreeCooling 4=ForceRecirculation 5+=ForceOff Dampers Only (Fans ON, TEST ONLY)
MSV 13	Multistate Value	1010	1	InputRegister	PRC_ DamperMode_ Status	Read Only	RegenCore Damper Status: 1=Off 2=EnergyRecovery 3=FreeCooling 4=Recirculation 5=SmokePurge

This document contains the most current product information as of this printing. For the most up-to-date product information, please go to SolutionAirGroup.com

© 2023 SolutionAir Group. All rights reserved.